TU Berlin

Main document

ML-IVC - Multi-Layer Inter-Vehicle Communication


  • Computer and Communication Systems, University of Innsbruck



  • internal CCS project

Project Time

  • 01.09.2011 - 31.03.2014


The information exchange among vehicles on our streets is becoming a key building block for a variety of applications ranging from safety critical warning systems to information systems and even entertainment applications. Besides the use of cellular networks, short range broadcast is an extremely efficient way for inter-vehicle communication. In this project we investigate several aspects of such IVC approaches:

  • Beacon-based information exchange - periodic beacon messages build the basis for so-called cooperative awareness of driving vehicles. It has been shown that the periodicity of such beacons strongly depends on several factors including the vehicles' density, possible obstacles blocking the radio communication, and the importance of messages to be transmitted. Based on our ATB (Adaptive Beacon Protocol) concept, we investigate adaptive and self-organizing options for improving the beacon efficiency with a strong focus on safety related applications.
  • Distributed information management - besides the direct exchange of information between vehicles, the use of infrastructure elements strongly improves the efficiency of information management in a massively distributed system such as a vehicular network. We exploit both the use of road side units as well as the use of parked vehicles to optimize the communication efficiency. Dynamically grouping vehicles allows to share information between this group and passing vehicles. We see special advantages of using parked vehicles as a distributed information storage as well as to bridge communication gaps in safety critical applications.
  • Simulation techniques and field tests - performance evaluation of IVC solutions typically depends on extensive simulation experiments. We continuously extend our Veins simulation toolkit that integrates network simulation and road traffic micro simulation. In particular, we are developing very realistic radio attenuation and shadowing models based on empirical observations from field tests and experimental measurements. These models are fully based on the standard DSRC/WAVE protocol suite.

Selected Publications