

Controlled Mobility in Sensor Networks http://nsrc.cse.psu.edu/

Professor Thomas F. La Porta,

Director, Networking and Security Research Center

Department of Computer Science and Engineering

Wireless Sensor Networks

Mobile Sensors

Size: 7 x 4.5 x 3.5 (cm) By USC

Size: 13 x 6.5 (cm) base By UC Berkely

Size: 2.7 x 2.1 x 4 (cm) By NASA

Controllable Mobile Sensors

– Power consumption:

Movement >> Communication

- Communication:
 - Range: 10ft~100ft
 - Bandwidth: 40kpbs
- Sensing range < Comm range/2</p>
- Mobility: 20cm/s
- Cost: \$150

- Self-deployment protocols for a mix of mobile and static sensors
- Sensor relocation
- Future research plans

Direct the movement of mobile sensors to increase coverage

Our Solution

Greedy heuristic

Moving sensors to the largest holes

Framework

- Coverage hole detection
 - Voronoi diagram
- Distributed allocation of mobile sensors to the holes
 - Basic bidding protocol
 - Proxy-based bidding protocol

Challenge:

Mobile sensors do not know where the largest holes are

Idea: Bidding

- Mobile sensor: hole-healing server
 - **Base price**: area currently covered
- Static sensor: bidder
 - **Bid**: estimated size of the detected coverage hole
 - bid > base price

Coverage Hole Detection

Basic Bidding Protocol

Base price increases monotonically and protocol terminates when no bidder can provide a higher bid than the lowest base price of mobile sensors

Iterative physical movement

Key idea: Virtual movement

Proxy sensor (winning bidder):

- Processes bidding messages
- Advertises services
- Notifies the mobile sensor to move

Percentage of mobile sensors	Algorithm tested
100%	VEC protocol ([Infocom04])
10%~50%	Bidding protocol
0%	Random deployment

Comparisons

- Self-deployment protocols for a mix of mobile and static sensors
- Sensor relocation
- Future research plans

Direct the movement of sensors to overcome failures under a time/energy constraint

Challenges

- Recovery may have to occur before a deadline
- Relocation should not affect other missions supported by the network
- Relocation must consider network lifetime

Outline of Solution

Phase I

- Locate redundant sensors: quorum-based solution
- Phase II
- Relocate sensors to target positions

Locating Redundant Sensors

Apply grid-quorum to reduce searching overhead

- Grids in one row form a supply quorum
- Grids in one column form a request quorum

Directly moving the sensor to the destination may not be a good solution

- Long delay and unbalanced power consumption

Use cascaded movement

Controlling Delay

- q Let recovery delay of s_4 be T_4
- q distance(s_3, s_4) \leq speed* T_4
- q s₃ can leave at (0, T_4 distance(s₃, s₄) /speed)
- q Let recovery delay of s_3 be T_3
- q Let s_3 leave at $t_3 = T_4$ distance(s_3, s_4) /speed
- q distance(s_2, s_3) \leq speed*($T_3 + t_3$)

q

distance(
$$s_i, s_{i+1}$$
) \leq speed*($T_{i+1} + t_{i+1}$)

Tradeoff between Load balance and energy efficiency

- Maximize minimum remaining energy E_{min} ?
- Minimize total energy consumption E_{total}?

Tradeoffs of Using Cascading

Using Modified Dijkstra's Algorithm

Penn State, 6-5-06

- Self-deployment protocols for a mix of mobile and static sensors
- Sensor relocation
- Future research plans

Optimize value of a network over its lifetime

- Quality of data coverage
- Ability of data to be collected communication
- Energy required for reconfiguration and communication
- Value of mission

Value of data for mission *j* Value of configuration k $v_{i,i}^{k} = u_{c}(X_{k})s_{i}(m_{i}X_{k})$ $V = \sum_{k}^{K} V_{k}$ Value over lifetime $C_k = M(X_{k-1} \to X_k) + E(X_k)t_k$ Cost of moving Communication energy

Summary

Sensor deployment in mixed sensor networks

- Balancing sensor cost and coverage
- First effort to address the problem

Sensor relocation

- Small impact on the topology
- In a timely and efficient way

Challenges

- Joint optimization between sensing and communication
- Accommodation of multiple missions
- Value of data

Possible Extensions

Varying density requirements

- Redundant will not mean the same thing in all grids

React to events, not just failure

- Multiple events
- Priorities

Proactive movement

- Pre-position sensors in anticipation of failure or event
- Request replacement sensor before death