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1 Executive Summary

This study (WP3.1.3) is the third in a series of four other studies intended to thoroughly survey the
research literature and identify the relevant state of the art in the context of distributed cooperating
objects (COs) and wireless sensor networks (WSNs). In particular, it discusses the roles and effects
of vertical system functions (VFs), which provide the required system functionality to address the
needs of the CO applications.

The objective of the first study (WP3.1.1) is to identify applications and application scenarios and
their requirements. The second study (WP3.1.2) aims at studying the state of the art of paradigms
and algorithms used to address the system characteristics and requirements of the CO applica-
tion domains. The fourth study (WP 3.1.4) describes the set of programming models, paradigms
and system architectures that facilitate the integration of the enabling technologies identified in this
document (as well as in the study WP3.1.2) to the application requirements discussed in the study
WP3.1.1.

The most important results of these studies will be used as an input to the preparation of a re-
search roadmap (WP3.3). This task has the goal of identifying relevant open issues to the future
development of cooperating objects.

2 Introduction

In the scope of the studies, a CO is defined as a collection of sensors, actuators, controllers or other
COs that communicate with each other to achieve, more or less autonomously, a common goal. This
recursive definition accounts for the cases where groups of cooperating objects can be regarded
as a single CO. Such arrangements enable them to combine hardware and software components
to support advanced sensor applications. Thus, organising such components into a framework that
can cope with the inherent complexity of the overall CO system will be an important exercise for
developers.

The list below of key points in the design space of a CO is based on the requirements set for the
wireless sensor platforms developed independently at UCLA and UC Berkeley [37, 48]:

• Small physical size: reducing physical size has always been one of the key design issues.
For instance, some applications will need more powerful CO units than others. Hence, COs
are likely to be heterogeneous devices in terms of processing, communication and sensing
capabilities. Such a diversity poses the challenge to find the right balance between the physical
device size and the minimal set of required hardware subsystems to be implemented in a CO.

• Low power consumption: energy constrains processing, lifetime and interconnect capability
of the basic CO device. The system should make efficient use of the resources striving to
minimise the overall power consumption. As a result, this will increase the CO active time
without battery recharging, which is an issue for a set of applications such as large-scale forest
fire monitoring.

• Concurrency-intensive operation: data will be frequently gathered from local sensors or re-
ceived from other COs, then they are processed through filtering/aggregation, and sent to
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other COs through the network. These tasks should be carried out simultaneously in order to
achieve the target sensing and actuation goals at the highest performance. Therefore, strict
resource sharing and task scheduling are key design issues.

• Diversity in design and usage: networked sensor devices will tend to be application-domain
specific providing only the necessary hardware support. For instance, sensors and actuators
built for medical health-care applications exhibit more complexity when compared to simpler
sensors used in environmental monitoring. Therefore, the hardware and software framework
of a CO should facilitate trade-offs among component reuse, cost, and efficiency.

• Robust operation: CO devices will be numerous and deployed over a large environment. The
individual devices should be carefully designed having reliability as one of the key properties.
Although device failures can be overcome with distributed fail-over techniques, this approach
should be avoided whenever it is possible because of the communication costs incurred. COs
need autonomous management abilities to self-test, self-calibrate and self-repair as recently
advocated in [61, 56].

• Security, privacy and trust: each CO should have sufficient security mechanisms in place
to prevent and counter-measure unauthorised access, denial-of-service attacks, and uninten-
tional damage of the information locally stored. These mechanisms need to be considered in
the design phase in order to make them pervasive throughout the system.

• Compatibility: the cost to develop software components dominates the cost of the overall sys-
tem. It is important to be able to reuse code developed for other systems.

• Flexibility: the CO system will evolve over time both in terms of hardware and software. Sup-
port for this growth can be introduced in the system through hardware programmability and
reconfiguration by using programmable processors and FPGA-based platforms. Also, software
modularity introduces flexibility and should be prioritised during the system design.

The question that arises is whether any available real-time operating system (RTOS) suits this
list of requirements. Some researchers believed that traditional RTOS was unsuitable and there-
fore they designed alternatives such as the micro-threaded operating system TinyOS [48]. Whether
this new OS is entirely appropriate for a CO system remains to be investigated. As advanced sen-
sor applications emerge, it is likely that the emphasis will be put on the design of more complex
micro-electromechanical (MEMS) sensors as already suggested in [129]. To support this sensor
development, a CO system will be built from powerful resources that need more implemented func-
tionality and efficient interactions than the ones currently offered by TinyOS. Readers are referred to
the study WP3.1.4 for a comprehensive discussion on CO systems and architectures.

The rest of the document is organised as follows: Section 3 defines a vertical system function
in the context of cooperating objects. Section 4 briefly discusses the characteristics and require-
ments of the CO applications studied in WP3.1.1 (Applications and Application Scenarios). Different
types of VFs to address these applications needs are then discussed including context and location
management, data consistency, communication and security, just to name a few. Section 5 gives a
summary of the VFs discussed in the document and concludes with some final remarks.
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Figure 1: Example of Vertical Functions: temperature and light sensing application

3 Vertical System Function (VF)

The current operating systems proposed for WSNs and COs cannot offer all the required functionality
to the applications. Thus, a vertical system function is defined in this study as the functionality that
addresses the needs of applications in specific domains and in some cases a VF also offers minimal
essential functionality that is missing from available RTOS.

Figure 1 introduces a simplified architectural view of an application-example originally discussed in
[48]. The goal is to monitor the temperature and light conditions of an area and periodically transmit
their measurements to a central base station. In this example, there are three VFs that applications
may ’invoke’: the communication subsystem (core system function), the light and temperature sen-
sors (application specific functions). Each VF is represented in the diagram by a vertical stack of
components. We envisage that standardised APIs will create mechanisms for linking applications to
vertical functions.

A component, labelled box in the diagram, is defined as a self-contained unit of code that encapsu-
lates its implementation and interacts with its environment by means of well-defined interfaces. Such
an interaction can be achieved through a software wiring process that interconnections the output
ports of a component to the input ports of another one. The composition of components can be rep-
resented as a system configuration graph, where components are vertices and their interconnects
form the graph edges [48, 24, 60].

The essence of component interactions is twofold. The control interaction handles the requests for
data to lower-level components (top-down). In contrast, the data interaction deals with the requested
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data by creating a bottom-up data flow path between components. This is shown in the figure as
vertical lines with arrows.

The component wiring process will facilitate the synthesis of individual components into a larger-
scale system. Components may be grouped together to form more concise modules [24, 81]. The
CO system may be arranged in several levels of abstraction from the most abstract (closest to the
application) down to the most concrete (closest to the hardware devices). Abstraction allows better
software structuring for clarity and reuse. Although layers are natural consequences of arranging
components in the system, they are not a design requirement.

The implementation of a VF will follow a layered approach when the system architecture is de-
signed in such a way. Although layered architectures facilitate key design properties such as flexibility
and abstraction levels, they require attention to conformance and can severely impact performance
in systems that lack hardware resources, for instance, low-power wireless sensor platforms.

The question to address in this case is how we map a general layered CO system architecture to a
resource-constrained hardware platform without sacrificing overall performance. Ideally we seek to
minimise the overhead imposed on the system by the various components and levels of abstraction
that are on the way before the hardware components can be accessed. It is important to note
that critical realtime applications such as control of industrial plants may not tolerate high system
response time.

To achieve an energy-efficient design, the traditional strict modularisation or layering is not appro-
priate. In wireless sensor networks, for instance, monolithic design of communication software is
used to reach the required energy-efficiency needs. However such a design choice makes system
development and management very difficult.

An approach that can be used to improve performance in systems low in resources is to implement
the VF using cross-layer interactions where the software components do not necessarily interact with
components immediately above or below in the abstraction level [75]. For instance, most abstract
components (closest to the application) may bypass other components and interact directly with the
most concrete components (closest to the hardware). The cross-layer design explored in [40, 28]
have shown promising results in reducing power consumption.

The architectural framework introduced in Figure 1 refers to a standalone cooperating object. We
believe that in practice there will be collections of COs in constant interaction to accomplish a pre-
assigned goal. In some application scenarios, VFs will be implemented through a chain of software
components that may or may not be within the operational boundaries of a single CO but rather
distributed in the network. For example, a VF that is responsible for collecting temperature readings
of rooms in an office building needs distributed coordination among COs located in each room in
order to implement the intended functionality.

4 Types of Vertical System Functions

The set of characteristics exhibited in CO applications are more diverse than the ones found in
applications of traditional wireless and wired networks. Critical factors impact the architectural and
protocol design of such applications. These factors also introduce some strict constraints.

The study WP3.1.1 (Applications and Application Scenarios) examined this set of characteristics
and requirements. Below we briefly review the relevant ones and discuss the most suitable VFs
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to address them. The reader should refer to the document WP3.1.1 for a comprehensive study on
selected cooperating objects applications.

Network topology: in a CO application, nodes may communicate directly provided they are geo-
graphically close to each other. Such a communication can be established in a single hop net-
work topology. When nodes are located far from each other, they need to rely on third nodes to
forward their data packets requiring, therefore, a multi-hop sensor network. VFs which may of-
fer direct support to this characteristic are communication (Section 4.3) and distributed storage
and data search (Section 4.5).

Scalability: the number of COs that may support an application can vary depending on the en-
vironment where it is deployed and on its task. This property is rather important in outdoor
applications and it is often the design issue of techniques for distributed storage and search.
As the system scales up, consistency of the data gathered from multiple sources should be
addressed in an efficient manner. Data consistency functionality is extensively discussed in
Section 4.2.

Fault tolerance: it is highly possible that some COs may fail during the operation of the network
for various reasons including battery discharge and harsh environmental operation conditions.
The data consistency VF tackles some of the issues associated with node failures. In addition,
the communication VF should provide the data communication resilience required by the ap-
plications. Fault tolerance is also closely related to the security VF (Section 4.4) since node
failures may be caused by attackers.

Localisation: there exist several CO applications for target tracking and physical event detection
including intrusion and forest fire that require node and/or target localisation. GPS may be
the natural choice for computing a node’s location. These devices, however, do not work in
indoor areas and are still of high cost for low-power sensor nodes. The context and location
management VF (Section 4.1) surveys the most recent research advances in this area.

Time synchronisation: applications need to establish a common sense of time among the coop-
erating objects participating in their sensing and actuation goals. Such a functionality can be
offered through a time synchronisation VF (Section 4.8).

Security: the CO system may be threatened by unauthorised users trying to access the network.
Also, there are security risks on the physical layer of the network. For example, jamming signal
may corrupt the radio communication between the entities in the mission-critical networks. In
a CO, security is pervasive and must be integrated into every system component to achieve a
secure system. Thus, the security functionality is likely to be offered at different levels and not
exclusively by the security, privacy and trust VF.

Data traffic characteristics: The amount of data travelling inside the network determines the traffic
characteristics of an application. In a particular application, the data transferred among nodes
may be limited to a few bytes for simple measurements whereas heavy video-audio traffic may
be conveyed in another application scenario. At least three VFs can provide the adequate
support for different types of traffic. The communication and distributed storage and data
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search for high-level dissemination of sensor data offer mechanisms for transferring the data
of interest in the network. In addition, the data aggregation (Section 4.6) provides an energy-
efficient optimisation tool for various types of data traffic.

Networking infrastructure: CO networks can be infrastructured or infrastructureless (ad hoc). Even
in some applications, the data can be collected by some mobile nodes when passing by the
source nodes. This is an important characteristic that determines the type of system approach
used (with or without supporting infrastructure) in the majority of VFs surveyed in this docu-
ment including the techniques for context and location management VF and MAC layer/routing
protocols in the communication VF.

Mobility: in some applications, all physical components of the system may be static whereas in
others, the architecture may contain mobile nodes. Applications which can benefit from au-
tonomous robots for actuation may require special assistance for mobility. Adequate support for
medium and high mobility in multi-hop networks is still an open issue that should be addressed
in the implementation of future VFs such as context and location management, communication
and many others.

Node heterogeneity: the majority of CO applications include nodes that have distinct hardware and
software technical specifications. In a precision agriculture application, for instance, there may
exist various types of sensors such as biological and chemical. Energy may be constrained
in some of the nodes. Thus, the data search VF mechanism needs to be energy efficient.
Also, data will originate from different sensor nodes so that adequate schemes for ensuring
consistency of heterogeneous sensor data must be used. This can be offered to the CO
application through the data consistency and aggregation VFs.

Power Awareness: power consumption is one of the performance metrics and limiting factors al-
most in any CO application. Systems require prolonged network lifetime. Thus, efficient power
consumption strategies must be developed. Power-aware communication protocols are sup-
ported in the communication VF. Also, as more complex sensors are designed - for instance
in healthcare applications - there is a growing need for tighter control on nodes’ resources to
save energy. The resource management VF (Section 4.7) deals with the power consumption
issue.

Real-time: the system delay requirements are very stringent in real-time applications. The broad
meaning of delay in this context comprises the system data processing and network delay. For
instance, in a industrial automation scenario actuation signals are required in real-time. VFs
are capable of offering the required functionality to applications through cross-layer system
approaches which can significantly reduce the overall system delay. Thus, resource monitoring
and system adaptation achieved with cross-layer component-based interactions are important
schemes that should be made available to the applications. The resource management VF
can offer the necessary functionality to real-time applications.

Reliability: end-to-end reliability guarantees that the transmitted data is properly received by the
receiving-end. In some applications end-to-end reliability may be a dominating performance
metric; whereas it may not be important for others. In security and surveillance applications in
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particular, guaranteed end-to-end delivery is of high importance. Such non-functional require-
ment can be fulfilled through the coordination and interaction of various VFs including the data
consistency, communication and security, privacy and trust.

We will follow the order below to discuss the relevant vertical system functions in the sections that
follow:

Types of Vertical System Functions

Context and Location Management

Data Consistency

Communication functionality

Security, Privacy and Trust

Distributed Storage and Data Search

Data Aggregation

Resource Management

Time Synchronisation

4.1 VF: Context and Location Management

Distributed Cooperating Object systems are designed to measure properties of the physical world.
They are, therefore, suitable for gathering the context of an entity, which is the information that can be
used to characterise its situation. Individuals, locations, or any relevant object can be such entities
[13].

Most researchers argue that context information has three major attributes through which it can be
accessed: the identity of the entities, their location, and the time at which the information has been
gathered. Since a reasonable amount of data is collected in large systems, context management
systems are needed to handle them. Such systems can separate applications from the process
of data processing and context fusion. Additionally, this allows a number of cooperating objects to
share the gathered context.

Changes in context may also trigger actions to influence the monitored entity. Specialised ac-
tuators, for instance, may be programmed to control pipe valves when a fluid pressure reaches a
certain threshold. To achieve precise actuation and detailed analysis of collected measurement
data, however, the spatial distribution of sensors needs to be known. Thus, determining the location
of cooperating objects is a requirement of a large number of applications, including monitoring of
habitat, urban and indoor areas.

This section explores the design space of vertical functions for context and location management.

4.1.1 Context Management

Classical context management systems use infrastructure-based directories to store the information,
for example Aura [39] and Nexus [49]. This has the advantage that the device knows where the in-
formation can be queried from. On the other hand, to avoid bottlenecks the data has to be structured
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in some way and distributed among several devices. With — usually small — cooperating objects,
the distribution of the context is system-driven. Also, the context often has only limited spatial rele-
vance which is reflected by the typical wireless communication which is also spatially restricted. It is
reasonable to store the context at or near the location where it is generated.

To start with the gathering of the sensor data, MiLAN [44] allows for the decoupling of application
and data gathering. The user has to provide a specification of which sensors, or a set of sensors,
can provide what QoS for which data. Additionally, the user specifies which data with what QoS are
needed when the application is in various states. Then, MiLAN makes sure that the needed data is
available. The actual source of the data is transparent to the application.

The management of data in a single device is the focus of the MobileMan project [27]. It creates
a cross-layer architecture for the network protocol stack in mobile ad-hoc networks. MobileMan pri-
marily aims at developing a network protocol stack that is optimised with cross-layer interactions.
A more general approach is followed in TinyCubus [75]. Cross-layer data such as context informa-
tion is stored in a State Repository. The Cross-Layer Framework ensures that data needed by an
application component is provided by another.

With TinyDB [71], a whole network can be regarded as a database. It mainly focuses on exter-
nal queries since they are parsed and optimised externally, but a fixed set of pre-parsed and pre-
optimised queries could also be used inside the network. Such database approaches thus provide
an easy way to get context data when the storage location is unknown.

In geographic hash tables [97], the storage location can be calculated from the index key. Each
node has to have a geographic location, and the data is stored in the node geographically nearest to
the hash of its key. Thus, context data can be queried directly from the storage node.

The cooperating objects themselves belong to the context as well. [135] presents a self-monitoring
system for sensor networks. It continuously computes aggregates (sum, average, count) of network
properties like loss rates, energy levels, etc., and disseminates them in the network in an energy-
efficient manner. All objects can access the system context of the network.

We have shown the different parts of context management, starting with the gathering of sensor
data. This data is made available to all components of an application and to other nodes in the net-
work in different ways. Several approaches exist for these purposes, but to the best of our knowledge
none covers the complete context management area. Therefore, more research is needed here.

4.1.2 Context-aware Applications

Applications are called context-aware if they adapt their behaviour based on the context. Several
forms of this adaptation exist including the selection of information, the change of the presentation,
or the triggering of some action based on gathered context.

The GUIDE project [25] developed a tourist guide for the city of Lancaster in the UK. Personal and
environmental context are used including, for example, the visitor’s interests, her current location,
the time of the day, and the opening hours of attractions. The information is presented with respect
to the age and the technical background of the visitor.

Sharing of context of a mobile phone user was the focus of the TEA project [110]. The user can
set his current context using his mobile phone for example to ‘Free’ or ‘Meeting’. This information is
presented to the caller which can then decide to call anyway, to leave a message, or to cancel the
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call.
Gaia OS [99] provides support for Active Spaces that combines physical and virtual contextual

information related to the physical space and allows interaction with the physical space. Applications
can be developed without strict knowledge of the infrastructure – Gaia is responsible for mapping
these applications to a physical space. A framework that separates model, view, and controllers
allows for runtime adaptation due to changes in the environment.

In ad-hoc environments, context-based adaptation may have different goals, e.g., lower energy
consumption or lower latency. Impala [68] contains an application adapter that adapts the appli-
cation protocols to different runtime conditions, which include system and application parameters.
Adaptation decisions are made using a finite state machine where states represent different proto-
cols/applications. Each directed edge carries a parameter expression for the condition under which
the switch occurs. The adaptation goal is, therefore, implicitly given by these conditions.

TinyCubus [75] uses several variables in three dimensions: ‘system parameters’, ‘application re-
quirements’, and ‘optimisation parameters’ of the object context to perform the adaptation. For each
combination of parameter values, an algorithm is known to the system which performs best. Based
on policies and different adaptation strategies, a set of algorithms is selected that provides the func-
tionality required by the application and that fulfils the best desired optimisation.

4.1.3 Location Management

Location services for mobile ad hoc networks only offer limited context information, i.e., the position
of mobile objects. Prior to storing the location in such a service, the location has to be determined.
Small cooperating objects usually do not have a GPS device, so different approaches are needed.

We refer the reader to the following surveys [47, 84] for an extensive discussion on infrastructured
and infrastructure-less location mechanisms. This section covers some of the most recent research
advances in location management and determination.

A scalable, distributed location service is GLS [67]. Each node has a small set of other nodes as
its location servers and updates them periodically with its location. Thereto, it does not have to know
their actual identities but only their identifiers. All routing — also routing of location queries — use a
predefined ordering of node identifiers and a predefined geographic hierarchy.

Two basic approaches are commonly used to determine the position of objects. Having distances
to three objects of which the location is known, the own location can be calculated. The other pos-
sibility is to measure the angle to two known objects. Since most cooperating objects are equipped
with omnidirectional antennas, a very accurate measurement of the angles is not feasible. Though,
[74] shows that the location estimation is significantly more accurate and feasible on Mica2 motes
using two directional antennas.

Several methods exist to determine the distances to other nodes, for example time of flight or
attenuation. Besides the normal radio, ultrasound can be used [109] which is a more accurate
system for distance measurements and does not suffer from some problems like relying on radio
received signal strength. For computing the node locations, in [109] a global non-linear optimisation
problem is set up and solved. A fully distributed approximation for the solving algorithm is presented.
Some special nodes capable of long distance ranging (e.g. using long range ultrasound) are used
as initial location beacons.
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The location discovery algorithm in [36] works with distance measurements based on the received
signal strength indication (RSSI) values delivered by the RF chip. Especially in indoor environments,
RSSI can have an error as large as 50% of the measured distance. Since the error conforms to a
Gaussian random variable, it can be calculated with the location. The standard deviation is used
as the degree of precision of the location. The precision estimates of all values are considered in
all subsequent calculations of location for undetermined nodes, thus accumulating the errors in the
results of the new calculation.

While the last approach assumes static nodes, an algorithm for semi-static sensor networks is
presented in [33]. It uses the properties of a randomly deployed sensor network, more precisely the
average density of nodes that are uniformly distributed. Assuming a fixed transmission range for all
nodes, the distance between any two nodes can be calculated using only the hop count between
them. In a further step, the hop count is combined with a distance estimate obtained in a traditional
way. By limiting the number of hops a distance message can travel, the precision can be increased
again.

Although considerable research have been done in the area of location estimation, positioning is
still too inaccurate. Also, for mobile cooperating objects no good approaches exist. Therefore, more
research is needed in this direction.

4.2 VF: Data Consistency

The benefits of having several CO nodes mostly come from the fact that many nodes simultaneously
monitor the same physical area. Nodes can be put into sleep mode without any loss of precision in
the network. This results in conservation of energy and an increased network lifetime.

The reliability of the system is also improved with several sensor nodes. This scenario, however,
raises issues regarding data inconsistency which may occur due to various reasons - for instance
inherent imprecision associated with sensors, inconsistent readings and unreliable data transfer, just
to name a few.

This VF provides the functionality to ensure consistency of the sensor data at various system
abstraction levels:

• Data consistency may mean that data retrieved from a location in the sensor network should
be consistent with data sent to the same location.

• Data consistency may also mean that all sensors sensing the same physical phenomenon
should more or less agree on the measured value.

• In a rule-based system, data consistency may mean that all actuators agree on the action that
needs to be taken.

Different mechanisms have been used to solve data inconsistency problems in various levels. As
will be shown in the next section, while the focus of the first definition of ‘data consistency’ is on low
level, the second concerns the ‘data consistency’ on higher level and is more commonly known as
‘consensus’ and ‘data aggregation’. The third definition, also at a higher level, relates to the future
direction of handling data inconsistency for complex WSN applications.
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4.2.1 Consistency Handling Mechanisms (Operation of WSN)

The following primitives are needed to ensure accurate and consistent operation of the WSN and
cooperating objects:

Localisation In order to interpret sensor data and collaborate with other nodes, it is crucial for
sensor nodes to know approximately the position of the nodes with whom they collaborate. Usually
manual configuration of nodes’ positions is not feasible, and in situations where nodes are mobile
this approach is even impossible. The availability of computing and communication capabilities on
nodes makes it possible to use automated location techniques.

Synchronisation WSNs and distributed CO systems must have a mechanism to ensure all nodes
have an equal understanding of time and the moment at which events take place. Consequently,
the nodes must keep their local clocks approximately synchronised with respect to a reference time,
which may be one of the sensor nodes or an external source of time (e.g GPS). The time synchroni-
sation VF is discussed in Section 4.8.

Reliable Data Transfer Applications require guaranteed delivery of information and/or customis-
able degrees of reliability for data transfer. As sensor nodes are ubiquitously deployed they can
overcome lack of reliability through cooperation. Nevertheless, achieving dependability through col-
laboration among error-prone entities is a challenging task. On the one hand, collaboration mech-
anisms should be ingenious enough to provide best-effort robust communication of important data,
even in harsh conditions. On the other hand, the overhead introduced by cooperation along with the
additional energy consumption should be kept to a reasonable level. Due to the fact that standard
approaches cannot be applied to WSNs, reliability remains an open research issue.

Routing Routing is an essential mechanism in networking, wireless sensor networks included.
Unlike traditional networks, there are no dedicated routers in ad hoc sensor networks. Instead,
data forwarding from source(s) to destination(s) is accomplished through local collaboration among
neighbours. The various techniques proposed in the literature strive to achieve energy efficiency
while maintaining a best effort level of reliability.

Coverage The coverage problem in WSNs generally refers to how well an area is monitored. Moni-
toring an area by several sensors has the advantages of (i) being able to turn off some of the sensors,
thus, saving valuable energy, and (ii) enhancing the accuracy of the sensed data by averaging mul-
tiple readings, for instance.

4.2.2 Consistency Handling Mechanisms (Data Processing)

Data consistency at the data processing phase can be achieved through the following mechanisms:
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State monitoring Sensor nodes can detect any change in state of the environment, in which they
are placed, directly from the sensed and measured data. In many situations, the whole network will
not have a single global state that needs to be monitored, but the network will monitor the states of
local processes, restricted to a confined area. The state might also be unique to each sensor node,
or to the object the node is operating on behalf of.

An attempt to formalise state monitoring is presented in [101]. Instead of composing a state
machine that is triggered by the occurrences of events, the authors propose to describe the creations
between states and the events that trigger state-change through a set of rules and predicates over
events and their parameters. In this way arbitrarily complex state change conditions can be defined.
In this system states have a binary nature as they are either occurring or not occurring. A change
of state can be used to trigger additional events or to perform actions. Strohbach et al. [119] used
a similar approach, using simple predicate logic to monitor hazardous situations such as chemical
drums.

Crucial to the design of a collaborative distributed state monitoring is the use of some high-level
description of the state transitions, and other relevant aspects.

Data fusion If redundancy is used to cover each point or region with multiple sensors, then the
accuracy and the consistency of sensed data can be improved by merging or fusing correlated
sensor data. Various schemes for data fusion have been proposed which deal with reduction in
transmission rates of the radio module (an expensive sensor node’s resource).

In this case, however, we are faced with the problem of fusing or combining the data reported by
each of the sensors monitoring a specified point or region.

This is a challenge as measurements recorded by the sensors can differ (because of inherent
imprecision in the sensors and/or the relative location of a sensor with respect to the monitored
region) and the fact that sensors might be faulty. The objective of sensor data fusion is to take the
multiple measurements and determine either the correct measurement value or a range in which the
correct measurement lies.

The sensor fusion problem is closely related to the Byzantine agreement problem that has been
extensively studied in the distributed computing literature. In [107] a hybrid distributed sensor-fusion
algorithm is presented. Each sensor needs to compute a range, in which the true value lies as well
as the expected value. For this computation, each sensor sends its measurement and its estimated
accuracy to every other sensor. This algorithm is executed by every sensor using the measurement
ranges received from the remaining sensors monitoring the same region combined with the sensor’s
own measurement. A typical drawback of this approach is the considerable communication overhead
introduced by exchanging so many messages. This is an important issue in the context of energy
constrained WSN nodes.

Event Detection Event detection is similar to state monitoring in a sense that the sensor network
itself is in charge of monitoring the environment in which its nodes are placed, and it is used to detect
occurrence of certain events.

Thanks to event detection mechanism exceptional situations can be detected, and consequently
be reported. Each sensor node has the task of detecting a possible event based on the data it obtains
through its sensors, and through communication with other nodes. Additionally, the occurrence of an
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event, along with its position, magnitude or other properties need to be reported. In many situations,
the value of these additional properties can only be determined, or more accurately be determined,
when sensor data of multiple sensor nodes are considered. The detection and reporting of these
tasks will need to be performed in an efficient way, using only limited communication between the
nodes, whenever data of interest is gathered, instead of reporting every sensed data sample. Beside
that, a description of the event and its properties will be needed to perform the task.

Event detection has been tried in several WSN applications already. In [128] a description is given
on a networked sensor array for monitoring volcanic eruptions. Seismic and infrasonic data is gath-
ered continuously, and when higher levels of activity are measured, the recently measured data from
different sensors is to be correlated and analysed to find data on the recent event. The implemen-
tation described does not make use of in network processing of the sensor data, but a feasibility
analysis is performed. Other uses of event detection are shown in systems that are concerned with
the detection, identification, localisation or tracking of objects in sensor fields [100, 123, 42, 31]. In
these applications sensor nodes around the object or event of interest collaborate to find the location
of the object or event.

Fault Tolerance and Consensus Clouqueur et. al in [26] present two distinct approaches, value-
fusion and decision fusion, for achieving fault-tolerance in collaborative target detection algorithms.
When performing a target detection task, multiple sensors in a region detect the presence of an
object using sound, motion, or heat associated with the object of interest. Therefore, combining
their views and obtaining a consistent conclusion through fusion process is highly desirable. Value-
fusion method consists of two phases: (i) exchanging the measured values and (ii) arriving to a
consensus by computing the average of values and comparing it to a threshold. In the presence of
faulty sensors, in order to preserve precision and accuracy, the extreme values are dropped from
the set that is going to be averaged. In contrast, in decision-fusion method, each device first makes
an independent decision as to whether or not a target is present and then the devices exchange
their decisions to arrive at a fault tolerant consensus decision. As in value fusion, the fused data is
obtained by averaging data received from all the sensors. For the situation of faulty nodes, exact
agreement is used to preserve precision. The comparative results show that value-fusion is clearly
preferable if the sensor network is highly reliable and fault free. However, when faulty nodes are
present, the performance of value-fusion degrades faster than the performance of decision-fusion
and decision fusion becomes superior to value fusion. Achieving fault tolerance through consensus
is a broad problem. Generally, each node has the task of trying to obtain a confident statement of
the state or situation about the environment is in. This information constitutes the state information
present at the node. The state information needs to be refreshed periodically to account for changes
in the topology due to movement of wireless sensors or due to nodes encountering crash failures.

The major challenge within WSN context is to devise protocols that minimise the effort for refresh-
ing and exchanging state information over the network. The protocol described in [63] generates
consensus under the assumption that the number of faulty nodes is less than the number of correct
nodes. The protocol is designed to enable self-correction in the network by isolating the faulty nodes
and putting them in sleep mode, thereby increasing the concentration of nodes having correct infor-
mation and improving their ability to generate consensus. The consensus process relies on forming
quorum, i.e. subgroups of sensor nodes with a certain minimum size. For instance, if there are k
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nodes having the same area of interest, the size of the quorum should be at least (k+1)/2. A quorum
is created after exchanging information among nodes, as follows: (i) the node that needs to gener-
ate consensus starts the process by sending its information, (ii) other nodes answer with positive or
negative acknowledgements, according to their information and (iii) the consensus is generated if
the initial node receives more than (k +1)/2 positive acknowledgements. As we have mentioned be-
fore, under WSN constraints, protocols should reduce as much as possible the number of messages
exchanged.

One way to achieve this is using aggregation [3] within the consensus process, either by concate-
nating values, summarising them, or by counting of a set. Other operations as well as aggregation
of other data than scalar numbers could also be possible. Key factor in using aggregation is that the
operation reduces the amount of data from a whole series of numbers (or different type of data) to a
single number, or a single value, or small set of values, and that the aggregation can be performed
hierarchically, creating an aggregate of a larger data set from the aggregates of smaller sets. Ag-
gregate operations do need the support of some sensor network management structure or service
to ensure proper operation. Aggregation can also make the protocol more susceptible to channel
errors: for low to medium bit error rate concatenation has good performance, whereas for high bit
error rate aggregation is not recommended.

In conclusion, the consensus problem in WSN has additional constraints compared to traditional
distributed systems. However, it is a highly important process for increasing the confidence of the
overall system, both by fusing sensed data and by providing fault tolerance.

4.2.3 Consistency Handling Mechanisms (Application Progr amming)

The more intelligent collaborative WSN applications become, the more essential becomes the need
for algorithms capable of supporting collective reasoning and actions in an efficient way. The exe-
cution space for these collaborative algorithms is represented by groups of COs that combine their
efforts to be able to agree on an action to be taken.

Such collaborative algorithms need to benefit from a novel high-level description mechanism (lan-
guage) oriented towards the collective model of solving tasks. A promising mechanism, extensively
explored in the database research community, is to have a rule-based language [119] to imple-
ment collaborative WSN applications. In this case, a set of rules that are stated as machine-
understandable statements describes legal or allowable states or situations as well as the alerts
that must be given when otherwise.

Although such scenario has the advantage of providing a high adaptive framework for collaborative
WSN applications, which in turn can enhance system performance, it may cause severe problems if
the rules and policies have not been carefully specified. An important reason for data inconsistency
in rule-based collaborative applications is due to versioning. To prevent this kind of inconsistency
from happening, the fact that the COs are using the same (latest) version of the rules should be
enforced. On the other hands, since rules and policies should be executed collaboratively, best
performance of the system highly depends on consistency between such rules for all COs involved,
otherwise, rules may cause conflicts and prevent the system from functioning.

Therefore, strategies are needed to check for rule consistencies of COs.

c©Embedded WiSeNts consortium: all rights reserved page 18



Embedded WiSeNts Vertical System Functions

4.3 VF: Communication Functionality

The communication vertical function refers to the capability of any pair (or group) of devices to
exchange information. Different kinds of communications can be performed: one to all, one to many,
many to one, many to many. If we consider the case of wireless sensor networks with a single sink,
one to all or one to many communications are needed for sake of interest and query dissemination,
while many to one communication is exploited to gather sensed data at the sink.

The first problem that needs to be addressed is CO addressing. Communication in a cooperating
objects environment is expected to be data centric and attribute-based. This means that more
than addressing a specific cooperating object the communication infrastructure should be able to
deliver data to and from groups of cooperating objects which share a set of attributes specifying
the destination/source address of the information. For example, a user could issue a query on
the average temperature of an area in an office building. This query should be delivered to the
objects with temperature sensors. Similarly, once measures on the temperature have been taken,
the cooperating objects in the specific area will send packets to the sink(s) reporting the measured
values.

Other important VF parameters which should be included in a query are the time constraints and
accuracy with which a given query needs to be answered. These are application-dependent and
even query-dependent parameters: (a) for a query to be successfully resolved, the sensors must
deliver fresh data, (b) the query must be answered fast enough, and (c) the precision with which the
query is answered must meet the query requirements. This translates into a new concept of ’quality
of service’ requirements.

Once a communication request between two or more cooperating objects is initiated, protocols
have to be adopted to deliver the transmitted information from the sender to the final destination.
Such protocols will typically involve physical layer protocols, data link protocols (FEC, ARQ pro-
tocols), medium access control protocols, ’topology control’ schemes (e.g. addressing the self-
organisation of nodes into a hierarchical network topology or into dynamically changing communica-
tions infrastructures according to given awake-asleep schedules), and routing protocols.

The second issue to address is the fact that a one-fits-all protocol stack may not be suitable to
this scenario. It is possible to identify the ’vertical functions’ that should be provided and possible
implementations of such functions for specific sets of possible applications. The communication pro-
tocols will benefit from and sometimes require the information provided by different vertical functions
such as time synchronisation and location awareness. Not only time and location information are
included in the delivered data, but some protocols such as geographic-based routing can exploit
location-awareness to reduce routing overhead and the nodes’ storage demand.

Mobility of objects is the third issue to be tackled. Although in many cooperating objects scenarios
the devices themselves are unlikely to be mobile they can be located on mobile users or mobile
stations so that their location changes in time in a predictable or unpredictable way. On one hand this
may have a beneficial effect (e.g. load balancing the energy consumption among the different nodes)
but on the other hand it requires mobility management or mobility-aware protocols to be added to the
protocol stack. The mobility of some of the devices have been explored by some architectures such
as the data mules [112], in which a group of mobile nodes move in the deployment area collecting
data from the sensor nodes and delivering the collected data to the sinks.

Although TinyOS [48] has been serving as the basis for experimentation of existing and new com-
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munication protocols, a common and consolidated framework for comparisons needs to be further
developed.

4.4 VF: Security, Privacy and Trust

Cooperating objects are usually placed in locations that are accessible to everyone – also to attack-
ers. For example, sensor networks are expected to consist of a couple hundred of nodes that may
cover a large area. It is impossible to protect each of them from physical or logical attacks. Thus,
every single node is a possible point of attack.

In a cooperating object, security is pervasive. [87] states that security must be integrated into
every component to achieve a secure system. Components designed without security can become
a point of attack as [54] shows. However, specific vertical functions to enforce security are available
for applications.

We start by describing how the hardware can be secured. Then, several encryption approaches
for cooperating objects are presented. Closely connected since encryption is mostly a prerequisite,
secrecy, privacy, data integrity, and trust are discussed. We conclude with a look at routing protocols.

4.4.1 Resource protection

Having physical access to the devices, without countermeasures an attacker could read out the
node’s memory including cryptographic keys and reprogram the node with malicious code. There-
fore, security starts with the hardware of sensor networks.

Tamper resistant devices would make the integration of security in sensor networks much easier
— we could rely on the strength of security protocols or cryptographic functions which have been
known already for many years. Unfortunately complete tamper resistance is very hard to achieve
[9]. There are a lot of known techniques to read data from devices which actually are meant to
be tamper resistant. For instance, [64] describes methods for extracting protected software and
data from smartcard processors. They show invasive techniques like microprobing and non-invasive
techniques like software attacks, eavesdropping, and fault generation. They even go further and
show that also additional countermeasures like additional metallisation layers that form a sensor
mesh above the actual circuit do not protect the circuit fully. Of course, some of these methods
require a well funded adversary, but thinking for instance on military applications the existence of
such an adversary is highly probable. Additionally to that, achieving such a tamper resistance level
is highly costly — which in most cases is not inline with the requirement that a single device should
be low cost.

Thus, the conclusion is, that in sensor networks tamper resistant devices can be used only in
a very limited and specialised areas — in the majority of cases the design of the security proto-
cols has to take into account that at least some devices get compromised by the adversary. Thus,
security protocols for sensor networks have to be designed in a way that they tolerate malfunction-
ing/attacking nodes while the whole sensor network remains functional — Karlof and Wagner [54]
talk in that context about a graceful degradation of the network in contrast to a totally compromised
network.
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Besides the above security issues, there is another danger for sensor networks, which is hard to
prevent: denial of service attack (DoS) on the physical layer. In such an attack, the attacker broad-
casts a high-energy signal to prevent any node from communicating. The attacker can also use the
features of the MAC protocol by continuously requesting channel access to eliminate all normal com-
munication. Cryptographically secure spread-spectrum communication would be a defence against
such jamming, but unfortunately such RF-devices are not commercially available yet [87]. In case
of the jammed region not covering the whole network, the border nodes could create a map of this
region and reroute traffic around the jammed region [130]. Also, battery exhaustion is a DoS attack.
This can be counteracted for instance with rate limiting [130] which causes the network to ignore
requests beyond a threshold value. Thus, although there are some approaches to cope with some
kinds of DoS attacks, there is still further research needed in this area.

4.4.2 Encryption

Encryption is the basic technique for securing and authenticating transmitted data. Using asymmetric
cryptography on highly resource constrained devices is often not possible due to delay, energy and
memory constraints [20, 18]. It is also not expected that the devices of such sensor networks are
going to have more resources in the future — there is an interesting observation by Karlof and
Wagner that sensor network devices will more likely ride Moore’s law downward [54]. They make the
point that instead of doubling computational power every 18 months it may be more likely that the
devices become even smaller and cheaper solutions are sought.

Using symmetric cryptographical methods, the easiest solution is a shared key for the whole net-
work like in Secure pebblenets [11]. The disadvantages are obvious: If a single node is compro-
mised, all the network traffic can be decrypted. Additionally, no device to device authenticity can be
achieved.

If a unique key is only shared between any two nodes of the network, a single compromised
node has only limited impact. The attacker can read and modify only data that was sent to it, i.e.
the compromised node directly. All other network traffic remains secure. As a drawback of this
approach, a node needs to store keys for all other nodes — which may not be in line with scalability
and memory constraints. Moreover, these unique keys have to be established in some way.

SPINS [88] uses a central base station to establish new session keys. This introduces a sin-
gle point of failure that has to be protected exceptionally. Additionally, cooperating objects exhibit
strong ad-hoc character. Therefore, one can assume neither an infrastructure nor a base station. A
decentralised key management system is, therefore, more practical.

Several approaches are based upon random pairwise key pre-distribution [35, 23]. That is, before
deployment — for instance by the sensor manufacturer — every device is supplied with a random
set of keys from a key pool. After deployment, the devices try to establish connections by finding
a commonly shared key or by creating a new key through a secure path including other devices.
Due to random pre-distribution, real authenticated communication between arbitrary devices is not
always possible. It can only be assured with some probability that two arbitrary devices are able to
communicate in a secure way. Moreover, an attacker could also reconstruct the complete key pool
by compromising enough nodes.

If the key pre-distribution does not rely on a random set but on some algorithmic chosen set, the
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secure communication between arbitrary devices can be guaranteed. In [125] such an approach is
presented. The authors suggest physical contact1 for establishing the initial key set — nevertheless
also the manufacturer could pre-distribute this initial set of keys according to their algorithm. In their
approach, when two devices do not share a key yet, they can establish a new key by sending key-
shares along node-disjoint paths via secured point-to-point communication to each other. When all
key-shares are available at both nodes (which want to establish a new key) they just have to perform
for instance a bitwise XOR operation on all key-shares — the result of this operation is the newly
unique key, shared only by those two devices. It should be clear, that the attacker would also need
access to all key-shares in order to gain knowledge of the new key.

Since in-network processing is used to save power, end-to-end encryption can only be used
sparsely. Along an aggregation tree, only point-to-point encryption is feasible, but an attacker in
the tree has full access to the data. If the aggregation is locally bounded, the results of the aggrega-
tion can be sent directly and encrypted to the target node since no intermediate node is expected to
change the data.

4.4.3 Secrecy

Encryption is not sufficient for ensuring secrecy of data. Traffic analysis on the ciphertext can reveal
sensitive information about the data. When, e.g., a motion detector sends a message, one does not
need to know the data but can assume that it detected a motion. On higher layers, additional dummy
messages have to be generated to hide the important messages. This seems to be diametrical
in resource constraint cooperating objects, but secrecy may be a more important goal than energy
saving in some cases.

A dynamic virtual infrastructure for wireless sensor networks is presented in [126]. The system
contains a coordinate system, a cluster structure, and a routing structure. An energy-efficient pro-
tocol is proposed to maintain the anonymity of the network virtual infrastructure by randomising
communications so that it cannot be observed by an external attacker.

4.4.4 Privacy

The primary goal of sensor networks is to observe real-world phenomena. As long as nature is
the target, there is no privacy issue. But if humans are observed, privacy is threatened. However,
cooperating objects used in medical applications, for example, do have to monitor the status of a
patient. Encryption has to ensure that data cannot be overheard and is only available to legitimate
applications. If nodes are compromised, other mechanisms like intrusion detection have to exclude
these nodes from receiving data.

Data of other sensor networks might be available to everyone. Such networks should only deliver
data in a coarse-grained detail level that is not dangerous to privacy. For example, the system should
only return average values of larger areas but not of single locations. The result has to be computed
in a distributed manner so that no single node has access to the complete result.

1(physical contact for establishing an initial security association, i.e. a shared secret/key is also suggested by Stajano and Anderson
[118])
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Sensor networks are small enough and will even become smaller in the future. Therefore, they are
outstandingly suitable to spy on people. But beside jamming transmitters and bug detectors, pure
technological solutions are not able to solve the problem. [87] suggests a mix of societal norms, new
laws, and technological responses. However, they require more research in the future.

4.4.5 Data Integrity

An attacker in the network can generate false sensor or, more severe, aggregation data. The more
aggregated the data is, the more valuable it is. Therefore, there is a need to protect especially the
aggregated data. [93] proposed SIA, a framework for secure information aggregation in large sensor
networks: efficient protocols for the computation of the median, the average, the minimum and max-
imum of a value and the estimation of the network size. Using random sampling mechanisms and
interactive proofs, the user is able to verify that the answer of an aggregator is a good approximation
of the true value.

4.4.6 Trust

With several cooperating objects contributing to a common goal, it is necessary to assess the re-
liability of the information provided by an individual cooperating object. With respect to services
and transactions, trust has been researched for several years. For data-centric and fully distributed
architectures research has just started.

A distributed voting system is proposed in [23]. When a node detects a misbehaviour of another
node, it can cast a vote against this node. Above a certain number of votes, all other nodes refuse
to communicate with this node. To avoid a malicious node casting votes against many legitimate
nodes, each node is limited to a number of votes.

In [38], a more general reputation-based framework for sensor networks, is presented. Each node
monitors the behaviour of other nodes and builds up their reputation thereupon. This reputation
is used to evaluate the trustworthiness of other nodes. Thus, nodes with a bad reputation can be
excluded from the community.

Cooperating objects exhibit strong cooperation when performing an action. Thus, a single node
becomes less important to the overall result. Therefore, strong cooperation will be one of the feasible
approaches to secure the entire system through extensive data validation.

4.4.7 Protocols

Encryption mechanisms are not enough to defend against attackers. Careful protocol design is
needed as well. [54] describes several attacks against known routing protocols for sensor networks:
spoofed, altered, or replayed routing information, selective forwarding, sinkhole attacks, sybil attacks,
wormholes, HELLO flood attacks, and acknowledgement spoofing. For several routing protocols, the
relevant attacks are highlighted. Countermeasures could not be given for all protocols since security
was not a design issue.

In [30] a routing protocol is presented that is resilient to attempts to obstruct data delivery as it
sends every packet along multiple, independent paths.
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Ariadne [50] uses efficient symmetric key primitives to prevent compromised nodes from tampering
with uncompromised routes consisting of uncompromised nodes. It also deals with a large number
of types of DoS attacks. Since it is designed for ad-hoc networks, it may be suitable only for some
cooperating objects.

4.5 VF: Distributed Storage and Data Search

In cooperating objects and wireless sensor networks (WSNs) efficient storage and querying of data
are both critical and challenging issues. Especially in WSNs large amount of sensed data are col-
lected by high number of tiny nodes. Scalability, power and fault tolerance constraints make dis-
tributed storage, search and aggregation of these sensed data essential. It is possible to perceive a
WSN as a distributed database and run queries which can be given in SQL format. These queries
can also imply some rules about how to aggregate the sensed data while being conveyed from
sensor nodes to the query owner.

Since the lifetime of a WSN is generally dependent on irreplaceable power sources in tiny sensor
nodes, power efficiency is one of the critical design factors for WSNs [6]. Data aggregation tech-
niques [17, 135] that reduce the number of data packets conveyed through the network are therefore
important and also required for effective fusion of data collected by a vast number of sensor nodes
[6, 43]. Data aggregation in sensor networks combines the sensed data coming from the nodes
based on the parameters passed in queries. It can be classified according to one of the following
approaches:

• Temporal or spatial aggregation: data can be aggregated based on time or location. For
example, the temperature readings taken every hour or temperature readings from various
regions in a sensor field can be averaged. Also a hybrid approach which is the combination of
time and location based aggregation can be used.

• Snapshot or periodical aggregation: data aggregation can be made snapshot, i.e., one
time, on the receipt of a query. Alternatively, temporarily aggregated data can be reported
periodically.

• Centralised or distributed aggregation: a central node can gather and then aggregate data
or data can be aggregated while being conveyed through a sensor network. A hybrid approach
is also possible where clusters are formed, and a node in each cluster aggregates the data
from the cluster.

• Early or late aggregation: data can be aggregated at the earliest opportunity, or aggregation
of data may not be allowed before a certain number of hops hinder the collaboration among
the neighbouring nodes.

Data queries can be made not only for aggregated data but also for non-aggregated data. A query
in a sensor network may be perceived as the task or interest dissemination process. Sensor nodes
can be queried by using continuous or snapshot queries. Continuous queries can be periodical
where the sensed data are reported at certain time intervals or event driven where certain events
stimulate nodes to report the sensed data.
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The following characteristics of WSNs should be considered while designing a data storage, query-
ing and aggregation scheme for WSNs:

• Sensor nodes are limited in both memory and computational resources. They cannot buffer a
large number of data packets.

• Sensor nodes generally disseminate short data packets to report an ambient condition, e.g.,
temperature, pressure, humidity, proximity report, etc.

• The observation areas of sensor nodes often overlap. Therefore, many sensor nodes may
report correlated data of the same event. However, in many cases the replicated data are
needed because the sensor network concept is based on the cooperative effort of low fidelity
sensor nodes [6]. For example, nodes may report only proximity, then the size and the speed
of the detected object can be derived from the locations of the nodes reporting them, and
timings of the reports. The collaboration among the nodes should not be hampered by the
data aggregation scheme.

• Since there may be thousands of nodes in a sensor field, associating data packets from nu-
merous sensors to the corresponding events, and correlating the data about the same event
reported at different times may be a very complicated task for a single sink node or a central
system to handle.

• Due to large number of nodes and other constraints such as power limitations, sensor nodes
are generally not globally addressed [6]. Therefore, address-centric protocols (end-to-end
routing) are mostly inefficient. Instead of address-centric protocols, data-centric or location
aware addressing protocols where intermediate nodes can route data according to its content
[62] or the location of the nodes [21], should be used.

• Querying the whole network node by node is impractical. So attribute-based naming and data-
centric routing [114] are essential for WSNs.

Queries made to search data available in a WSN should be resolved in the most power efficient
way. This can be achieved by reducing either the number of nodes involved in resolving a query or
the number of messages generated to convey the results. There is a considerable research interest
to develop efficient data querying schemes for WSNs.

In the section that follows we examine data dissemination techniques which are closely related to
data querying, and then query processing and resolution techniques.

4.5.1 Data Dissemination

Data dissemination protocols are designed to efficiently transmit and receive queries and sensed
data in WSNs. We briefly discuss five of the best known data dissemination protocols for WSNs.
There are many others that can be categorised as data centric, hierarchical and location based.
Since the focus is on distributed storage and search we do not list these other protocols.

The routing protocols for WSNs are generally designed for networks that have fixed homogeneous
sensor nodes and are based on the assumption that all nodes try to convey data to a central node,

c©Embedded WiSeNts consortium: all rights reserved page 25



Embedded WiSeNts Vertical System Functions

Figure 2: Classic Flooding

often named sink. However, in cooperating objects networks there will be heterogeneous nodes that
can be mobile, and the sensed data will be needed by many nodes, i.e., multiple sinks. Therefore,
we can say that new routing protocols will be needed for cooperating objects.

Classic Flooding In classic flooding, a node that has data to disseminate broadcasts the data to
all of its neighbours.

Whenever a node receives new data, it makes a copy of the data and sends the data to all of its
neighbours, except the node from which it just received the data. In Figure 2, an example is depicted.
A sends the message to its neighbours B and C. Then, B and C copy the message and send the
message to their neighbours D and E respectively. The algorithm finishes when all the nodes in the
network have received a copy of the message.

Gossiping Gossiping [6], which uses randomisation to conserve energy as an alternative to the
classic flooding approach. Instead of forwarding data to all its neighbours, a gossiping node only
forwards data to one randomly selected neighbour.

SPIN SPIN [43] is based on the advertisement of data available in sensor nodes. When a node has
data to send, it broadcasts an advertisement (ADV) packet. The nodes interested in this data reply
back with a request (REQ) packet. Then the node disseminates the data to the interested nodes by
using data (DATA) packets. When a node receives data, it also broadcasts an ADV, and relay DATA
packets to the nodes that send REQ packets. Hence the data is delivered to every node that may
have an interest. This process is shown in Figure 3.

Directed Diffusion In SPIN, the routing process is stimulated by sensor nodes. Another approach,
namely directed diffusion [53], is sink oriented. A sink is the name given to the central node respon-
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Figure 3: SPIN Data Exchange

c©Embedded WiSeNts consortium: all rights reserved page 27



Embedded WiSeNts Vertical System Functions

Type
Interval
Duration
Rect
: four-legged animal
: 20ms
: 10 seconds
: [-100,100,200,400]
// Detect animal location
// Send back events every 20ms
// For the next 10 seconds
// From sensors within range

Figure 4: A Sample interest description

sible for gathering data from all the other nodes in directed diffusion where the sink floods a task to
stimulate data dissemination throughout the sensor network. While the task is being flooded, sensor
nodes record the nodes which send the task to them as their gradient, and hence the alternative
paths from sensor nodes to the sink are established. When there is data to send to the sink, this is
forwarded to the gradients. One of the paths established is reinforced by the sink. After that point, the
packets are not forwarded to all of the gradients but to the gradient in the reinforced path. A sample
interest description is shown in Figure 4, and data dissemination in directed diffusion is illustrated in
Figure 5.

LEACH LEACH [45] is a clustering based protocol that uses randomised rotation of local cluster
heads to evenly distribute the load among the sensors in the network. In LEACH, the nodes organ-
ise themselves into local clusters, with one node acting as a local cluster head. LEACH includes
randomised rotations of the high-energy cluster-head position such that it rotates among the vari-
ous sensors in order not to drain the battery of a single sensor. In addition LEACH performs local
data fusion to compress the amount of data being sent from the clusters to the base station. Sen-
sors elect themselves to be local cluster-heads at any given time with a certain probability. These
cluster-head nodes broadcast their status to the other sensors in the network. Each sensor node
determines to which cluster it wants to attach by choosing the cluster-head that requires the min-
imum communication energy. Once all the nodes are organised into clusters, each cluster-head
creates a schedule for the nodes in its cluster. This allows the radio components of each non-cluster
head node to be turned off at all times except during each nodes transmit time, thus the energy
dissipated is minimised. Once the cluster-head has all the data from the nodes in its cluster, the
cluster-head node aggregates the data and then transmits the compressed data to the base station.
However, being cluster-head drains the battery of that node. In order to spread this energy usage
over multiple nodes, the cluster-head nodes are not fixed. The decision to become a cluster-head
depends on the amount of energy left at the node. In this way, nodes with more energy will perform
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Figure 5: Directed diffusion

the energy-intensive functions of the network. Each node makes its decision about whether to be
a cluster-head independent from the other nodes in the network and thus no extra negotiation is
required to determine the cluster-heads. The cluster formation algorithm is depicted in Figure 6.

4.5.2 Query Processing and Resolution

After a query arrives to a sensor node, it is first processed by the sensor node. If the node can
resolve the query, the result of the query is disseminated. This approach is one of the simplest
ways of resolving and processing a query. Sensor nodes usually take advantage of collaborative
processing to resolve queries so that a smaller number of messages are transmitted in the network.
Queries can be flooding-based where a query is flooded to every node in the network. Alternatively
they can be expanded ring search (ERS) based where a node does not relay a query that it can
resolve. In this subsection, we briefly explain data storage and querying techniques in the literature.

TinyDB TinyDB [69] is a query processing system for extracting information from a network of
TinyOS sensors. TinyDB provides a simple, SQL-like interface to specify the data, along with addi-
tional parameters, like the rate at which data should be refreshed much as in traditional databases.
Given a query specifying data interests, TinyDB collects that data from nodes in the environment,
filters and aggregates them. TinyDB does this via power-efficient in-network processing algorithms.
Some key features of TinyDB areas follows:

• Metadata Management: TinyDB provides a metadata catalog to describe the kinds of sensor
readings that are available in the sensor network.

• High Level Queries: TinyDB uses a declarative query language that lets the data be described
without requiring stating how to get it. This makes it easier to write applications.
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Figure 6: LEACH Cluster Formation

• Network Topology: TinyDB manages the underlying radio network by tracking neighbours,
maintaining routing tables, and ensuring that every node in the network can efficiently and
(relatively) reliably deliver its data to the user.

• Multiple Queries: TinyDB allows multiple queries to be run on the same set of nodes at the
same time. Queries can have different sample rates and access different sensor types, and
TinyDB efficiently shares work between queries when possible.

• Incremental Deployment via Query Sharing: TinyDB nodes share queries with each other:
when a node hears a network message for a query that it is not yet running, it automatically
asks the sender of that data for a copy of the query, and begins running it. The TinyDB system
contains two applications: one application runs on the sensor platforms and another application
runs on the PC side. A User requests his query using the Java application on the PC. This
query is disseminated to sensor nodes and the application on the sensor platforms retrieves
and returns the requested information.

TinyDB includes a facility for simple triggers, or queries that execute some command when a
result is produced. A sample query is given in Figure 7 which calls SetSnd function to give alarm
when the temperature is over some threshold value and this value is checked every 512 seconds.
TinyDB includes the ability to run queries that log into the flash memory in the sensor nodes. TinyDB
provides commands for creating tables that reside in flash, for running queries that insert into these
tables, for running queries that retrieve from these tables, and for deleting these tables. One query
can log to a buffer at a time, and new queries will overwrite data that was previously logged to a
table. Currently, a query that selects from a Flash table and a query that writes to the same table
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SELECT Temp
FROM Sensors
WHERE temp>threshold
TRIGGER ACTION SetSnd(512)
EPOCH DURATION

Figure 7: Triggering SQL query

can not be run. Logging of the query should be stopped using TinyDB Client utility prior to collecting
data from flash tables.

When running queries longer than 4 seconds by default, TinyDB enables power management
and time-synchronisation. This means that each sensor is on for exactly the same four seconds
of every sample period. Results from every sensor node for a particular query should arrive at the
base station within four seconds of each other. This time synchronisation and power management
enables long running deployments of sensors. TinyDB aggregates results on the way to the sink
node. TAG [72] is an aggregation service offered by TinyDB. It operates as follows: users pose
aggregation queries from a powered, storage-rich base station. Operators that implement the query
are distributed into the network by piggybacking on the existing ad hoc networking protocol. Sensors
route data back towards the user through a routing tree rooted at the base station. As data flows up
this tree, it is aggregated according to an aggregation function and value-based partitioning specified
in the query. In order for users to pose declarative queries, an SQL like programming language was
designed.

Aggregates are classified in four categories according to their state requirements, tolerance of
loss, duplicate sensitivity and monotonicity:

• Duplicate Insensitive/Sensitive Aggregates are unaffected by duplicate readings.

• Duplicate sensitive aggregates will change when a duplicate reading is reported.

• Exemplary/Summary Aggregates return one or more representative values from the set of all
values.

• Summary aggregates compute some property over all values.

• Monotonic Aggregates aggregate the property that when a function f is applied to two partial
state records for all resulting values, it will be greater or lower than each of the evaluation of
pairs of values. This provides increasing or decreasing values for aggregate results.

• Distributive/Algebraic/Holistic/Unique/Context-sensitive Aggregates: Depending on the func-
tion a pair of values has to be carried. For example AVERAGE function requires the number of
elements used to compute the result and the result to further continue in processing. Distribu-
tive aggregates dont require other data to calculate a result; therefore, the size of the partial
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records is the same as the size of the final record. COUNT, MAX and MIN are examples of dis-
tributive aggregates. Algebraic aggregates require intermediary state information to continue
operation. The AVERAGE function is an example of algebraic aggregate. Holistic aggregates
require whole values to be kept together prior to computing the result. MEAN is one of these
operators. Unique aggregates are similar to holistic aggregates, except that the amount of
state that must be propagated is proportional to the number of distinct values in the partition.

• In Context-sensitive aggregates, the partial state records are proportional in size to some prop-
erty of the data values in the partition. Many approximate aggregates are content-sensitive.
Fixed-width histograms and wavelets are examples of these operators.

Queries in TAG contain named attributes. When a TAG sensor receives a query, it converts named
fields into local catalog identifiers. Nodes lacking attributes specified in the query simply tag the miss-
ing entry as NULL. This increases the scalability as not all the nodes are required to have a global
knowledge of all attributes. Attributes can be sensor values, remaining energy or network neigh-
bourhood information. TAG computes aggregates in network whenever possible to decrease the
number of message transmissions, latency and power consumption. Given the goal of decreasing
the number of transmitted messages, during the collection phase each parent waits for some time
period prior to transmitting its own message in order to aggregate the child nodes’ responses. How
long each node waits for other nodes responses is (EPOCH DURATION)/d, where d is the maximum
depth of the tree. In order to group received data, group id is tagged to each sensor’s partial state
record, so that response data is aggregated for the nodes with same group id. When a node receives
an aggregate from a child, it checks the group id. If the child is in the same epoch as the node, it
combines the two values. If it is in another epoch, it stores the value of the child’s group along with
its own value for forwarding in the next epoch.

By explicitly dividing time into epochs as in Figure 8, while waiting for other nodes responses to
arrive, the CPU can be set to idle during this time. But, the depth of the tree has to be known for
this principle to be made successful. However, waking up the processor will require synchronisation
to be employed. Finally, real users of sensor networks are most likely not sophisticated software
developers. Therefore, TinyDB has been supported by toolkits for easy access of data including
TASK and others. The complexity of sensor network application development must be reduced and
deployment must be made easy to ensure the success of sensor network technology in the real
world.

COUGAR Cougar [132] is a query layer for sensor networks. The query layer accepts queries
in a declarative language that are then optimised to generate efficient query execution plans with
in-network processing which can significantly reduce resource requirements. Cougar is motivated
by three design goals. First, declarative queries are especially suitable for sensor networks. Clients
issue queries without knowing how the results are generated, processed and returned to the client.
Second, it is very important to preserve limited resources such as energy and bandwidth. Since
sensor nodes have the ability to perform local computation, part of the computation can be moved
from the clients and pushed into the sensor network, aggregating records or eliminating irrelevant
records. Third, different applications usually have different requirements, from accuracy, energy
consumption to delay. For example, a sensor network deployed in a battlefield or rescue region may
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Figure 8: Partitioning of time into EPOCHS

only have a short life time but a higher degree of dynamics. On the other hand, for a long term
scientific research project that monitors an environment, power-efficient execution of long-running
queries might be the main concern. More expensive query processing techniques may shorten
processing time and improve result accuracy, but might use a lot of power. The query layer can
generate query plans with different tradeoffs for different users. The component of the system that is
located at each node is called query proxy. Architecturally the query proxy lies between the network
layer and the application layer and the query proxy provides higher level services through queries.
Gateway nodes are connected to components outside of the sensor network through long-range
communication and all communication with users of the sensor network goes through the gateway
node.

Declarative queries are the preferred way of interacting with a sensor network. The queries having
the form in Figure 9 are considered. It is very similar to the SQL language but it has limitations when
compared to SQL. One difference between the query template and SQL is that the query template
has additional support for long running, periodic queries. The DURATION clause specifies the life
time of a query and the EVERY clause determines the rate of query answers. A simple aggregate
query is an aggregate query without GROUP BY and HAVING clauses. In order to compute these
aggregates, further processing such as in-network aggregation has to be done. In order to process
data in-network, several sensor nodes transmit the packet to a central node named leader-node
which calculates the aggregates of incoming messages. There are three approaches that can be
taken to collect sensor data at a leader node. Messages can be directly delivered to the leader
node using an ad hoc routing protocol, messages can be merged into same packet to limit the
amount of packets transmitted and partial aggregation on the way to the central node can be done
by intermediary nodes. Synchronisation is needed if the messages are to be merged and some
duplicate sensitive operators such as SUM and AVERAGE require data to be transmitted once.
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SELECT
FROM
WHERE
GROUP BY
HAVING
DURATION
EVERY
attributes, aggregates
SensorData S
Predicate
attributes
predicate
time interval
time span e

Figure 9: Query Template

Synchronisation is used to determine for each node in each round of the query how many sensor
readings to wait for and when to perform packet merging or partial aggregation. Since the query
processing facility has been designed as a layer, COUGAR assumes that several ad hoc routing
protocols with modifications can be used for delivery of the messages. An AODV protocol has been
used with extensions for simulations. According to COUGAR, routes are set up in an initialisation
phase and each message carries the hop count of the message. Each node records the message
receive ID as a parent node and a reverse path to the leader is set up. Two methods are used
to maintain the tree. Local repair is used when a broken link is detected. Depth of the tree with
sequence number is used between nodes that are spatially close to find a new parent in the case
of a communication failure. Another method is to reconstruct the tree whenever the number of
messages expected reach below some user defined threshold.

In order to resolve queries like ’What is the minimum average temperature during the next seven
days?’ two levels of aggregation have to be done. First the average temperature has to be computed
and then the minimum operator has to be applied. In order to resolve these kinds of queries query
plans are used. A query plan is needed to compute complex aggregate queries that a user poses. A
query plan decides how much computation is pushed into the network and it specifies the role and
responsibility of each sensor node, how to execute the query, and how to coordinate the relevant
sensors. A query plan is constructed by flow blocks, where each flow block consists of a coordinated
collection of data from a set of sensor nodes at the leader of the flow block as depicted in Figure 10.
The task of a flow block is to collect data from relevant sensor nodes and to perform some computa-
tion at the destination or sensor internal nodes. A flow block is specified by different parameters such
as the set of source sensor nodes, a leader selection policy, the routing structure and the computa-
tion that the block should perform. Each flow block is called a cluster and maintained by some heart
beat messages transmitted by the leader of the flow. Several optimisations can be applied to query
plan construction such as creating flow blocks that are sharable between different queries and use
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Figure 10: A Cougar Query Plan

of the join operator which enforces two conditions coming from different data flows to be true before
returning a value. The join operator represents a wide range of possible data reductions. Depending
on the selectivity of the join, it is possible to reduce the resulting data size.

ACQUIRE: Active Query Forwarding The active query forwarding in sensor networks (ACQUIRE)
scheme [104] aims to reduce the number of nodes involved in queries. In ACQUIRE each node that
forwards a query tries to resolve it. If the node resolves the query, it does not forward it further but
sends the result back. Nodes collaborate with their n hop neighbours, where n is referred to as the
look ahead parameter. If a node cannot resolve a query after collaborating with n hop neighbours,
it forwards it to another neighbour. When n equals to 1 ACQUIRE performs as flooding in the worst
case. Query resolution in ACQUIRE is depicted in Figure 11.

MARQ: Mobility Assisted Resolution of Queries Mobility assisted resolution of queries in large
scale mobile sensor networks (MARQ) [46] makes use of the mobile nodes to collect data from the
sensor network. In MARQ every node has contacts that are some of the other nodes. When contacts
move around, they interact with other nodes and collect data. Nodes collaborate with their contacts
to resolve the queries.

SQTL: Sensor Query and Tasking Language Sensor query and tasking language (SQTL) [114]
is proposed as an application layer protocol that provides a scripting language. SQTL supports
three types of events, which are defined by the keywords receive, every, and expire. The receive
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Figure 11: Query resolution in ACQUIRE

keyword defines events generated by a node when the node receives a message; every keyword
defines events occurred periodically; and the expire keyword defines the events occurred when a
timer expires. If a node receives a message that is intended for it and contains a script, the node
executes the script.

SQS: SeMA Querying Protocol For Micro-Sensors SeMA is an enhanced client-server architec-
ture in which clients are supported to adapt themselves to the new network resources they discover
on the fly. The nodes get service information either by catching the periodically advertised services
or by generating a service request. Applications establish light-weight sessions with the resources
using the address returned to them. Binding is done when the service is needed. SeMA is a cross-
layer protocol, capable of operating on generic wireless data link layer protocols, such as IEEE
802.11. SeMA addresses issues like service announcement, binding, session management and
data routing. The monitoring of sensor networks is an application of SeMA architecture. The terrain
of the sensor deployment area is assumed to be suitable for navigating by means of some mobile
units, which form the information retrieval backbone of the overall monitoring application [12]. These
mobile units are either wireless equipment carrying livings or autonomous robots as seen in multi
robot exploration studies. The architectural view of the system is shown in Figure 12.

All available resources on the SeMA network are considered as services. They play a major role
on a SeMA network, since mechanisms of the protocol are built with the aim of providing means to
access those services. Specification of a service should include necessary information for SeMA
clients to determine whether the service fulfils clients need. Thus, services are modelled with a
generic name, and following attribute-value pairs. This definition is sufficient for a host to discover a
required service without any bindings beforehand. Details of XML processing of services and ad hoc
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Figure 12: SeMA Architecture

routing in the backbone can be found in reference [12]. In a sensor network application, clients of the
ad hoc network backbone become middleman which is defined in XML in Figure 13. They participate
in forming query driven sensor trees adaptively and backbone features are used to announce queries
and return collected results.

Queries for data of interest are transmitted through the backbone in service announcement pack-
ets. Service definitions contain an XQuery predicate, a result function and query timeout period
(QTP), as well as geographic region boundaries of the area of interest. XQuery predicate is used to
extract the readings that interest the monitoring application. Then, if specified in the service, these
readings may be processed via the given result Function. The actual query result to be submitted is
the returned data from this XQuery function. XQuery specifies more than 200 functions (including
functions in SQL) that include numerical processing, data aggregation (sum, avg, min, max), string
operations (string-join, starts-with, ends-with), pattern matching (matches, replace, tokenize) etc.
and more. By using XQuery in value fetching and processing, sensor querying process conforms
to XML standard, from monitoring application down to the sensor nodes. Temporarily posed sensor
drivers convert service parameters and XQuery predicate to a bitwise coded format. Coded query
is sent to sensors in the payload field of setup packet. In this model, sensor nodes are assumed to
be very simple equipment with limited processing and battery power. Setup packet initiates a tree
topology network in the area of interest among the sensors those have accepted the query.
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<service name = monitoring application>
<keyword attribute =validUntil>20031128193044EEST</keyword>
<keyword attribute = queryPredicate>sensor:read[value>100 and
order(value)<5]</keyword>
<keyword attribute = resultFunction>fn:concat</keyword>
</service>

Figure 13: XML definition of a monitoring service

DADMA: Data Aggregation and Dilution By Modulus Addressing In DADMA, a sensor network
is considered as a distributed relational database composed of a single view that joins virtual local
tables named Virtual Local Sensor Node Tables (VLSNT) located at sensor nodes. Figure 14 shows
the distributed database perception of DADMA. Records in VLSNT, are measurements taken upon
a query arrival and consist of two fields: task and amplitude. Since a sensor node may have more
than one sensor attached to it, task field indicates the sensor, e.g., temperature sensor, humidity
sensor, etc., that takes the measurement. Since sensor nodes have limited memory capacities, they
do not store the results of measurements. Therefore there can be a single reading for each sensor
attached to a node, and task field is the key field in the VLSNT created upon a query arrival. Our
perception of WSNs makes relational algebra practical to retrieve the sensed data without much
memory requirement, which is different from the scheme explained in [70] where the sensed data for
each task are maintained at a different column in a table.

Sensor Network Database View (SNDV) can be created temporarily either at the sink, i.e., the
node that collects the data from the sensor network, or at an external proxy server. An SNDV record
has three fields: task, location and amplitude. While data is being retrieved from a sensor node,
the location of the sensor node is also added to the sensed data. Since multiple sensor nodes may
have the same type of sensors, i.e., multiple sensors can carry out the same sensing task, task and
location fields become the key in an SNDV. In applications where nodes are not location aware, it is
also possible to replace the location field with the local identifications of the reporting nodes. The
location field can also be used to identify a group of nodes according to the aggregate and dilute
functions explained below. It should be noted that SNDV is a temporary view where the results of a
query are collected.

For many WSN applications, the sensed data are needed to be associated with the location data.
For example, in target tracking and intrusion detection WSNs, sensed data are almost meaningless
without relating them to a location. Therefore, location awareness of sensor nodes is a requirement
imposed by many WSN applications. There are a number of practical location finding techniques for
WSNs reported in [8].

Since each query results in a new SNDV, to keep the aggregated/diluted history of a WSN it may
be needed to maintain a permanent External Sensor Network Database Table (ESNDT) in a remote
proxy server. In ESNDT the records obtained from queries, i.e., the records in SNDVs, are stored
after being joined with a time label. For example, a daemon can generate queries at specific time
intervals or at the occurrence of a specific event, and insert the records of SNDVs resulting from
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Figure 14: A sensor network perceived as a distributed database

these queries into the ESNDT. To distinguish the equal amplitudes sensed by the same node about
a specific task during different periods, task, location and time fields make the key in an ESNDT.

In DADMA a statement that has the structure given in Figure 15 starts a query. This structure is
largely a part of the SQL standard [10] except for the last field starting with ’based on’ which will be
explained later in this section. Using SQL style statements for a generic query interface has some
advantages as described in [70]. Programmers and system administrators can use this practical
and standard interface for all kind of WSN applications. Hardware design for WSNs can also be
optimised to run this language.

In the Select keyword of the SQL statement common aggregation functions such as avg, min, max
can be used to indicate how to aggregate the amplitude field. The fields to be projected from an
ESNDT are also listed after this keyword. The ”From” keyword indicates the nodes to be involved
in the query. Any means that even a single node may be enough to resolve the query, and any
node in the sensor network can do it. When the ”every” keyword is used, all of the nodes in the
sensor network are supposed to be involved in the query. When a task or a set of tasks is given
in the query, only the sensors in the specified types carry out the measurement. Aggregate and
dilute keywords are also introduced to spatially group the nodes. The ’where’ keyword is for defining
selection conditions according to available power and/or time and/or amplitude and/or location. The
’group by’ field is used to specify the set of tasks for which the aggregation of the sensed data will be
carried out. The ’based on’ keyword is followed by the parameters required for the aggregation and
dilution algorithm run by the sensor nodes. In [22], the distributed algorithm that process the queries
in this format is explained.
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Select [task, time, location, [distinct | all], amplitude,
[[avg | min | max | count | sum ] (amplitude)]

From [any, every, task, aggregate-m, dilute-m]
Where [power available [<|>] PA]

Location [in | not in] RECT |
tmin<time<tmax|
amplitude [<|==|>] a]
Group by task
Based on [time limit = lt | packet limiy = lp |

resolution =r | region = xy]

Figure 15: The structure of an SQL statement for DADMA

4.6 VF: Data Aggregation

Since Wireless Sensor Networks (WSNs) comprise large numbers of energy-constrained, inexpen-
sive devices deployed in possibly inaccessible areas, battery re-charge or replacement is not a
viable option. For this reason, energy-efficient protocols have to be developed to minimise device
energy consumption, hence maximising the amount of time during which the network can be fully
operational (denoted as network lifetime in the following). In such resource constrained devices the
dominant component in terms of energy consumption is the wireless transceiver. This imposes the
development of an energy-efficient protocol stack.

In general terms, an energy-efficient communication protocol is a protocol designed to minimise
the energy-consumption associated to its operations without significantly degrading other relevant
metrics performance (such as latency, throughput, etc.). Energy-conservation often involves trade-
offs (energy vs. accuracy, energy vs. latency, etc.) that have to be considered when in the protocol
design.

The basic building blocks to energy-efficient solutions for WSNs are the following. The wireless
interface consumes a fixed amount of energy for receiving (due to the transceiver circuitry), while
the cost for transmitting accounts for two components: the first is fixed and is due to the transceiver
circuitry, the second component instead depends on the emission power. Depending on the trans-
mission range of the considered technology the cost due to the fixed component may be either
negligible or higher than the cost due to the emission power. Short transmission ranges (between
20-30m) have comparable costs when in idle state, or when receiving and transmitting. In these sce-
narios (which reflects the typical operational scenario of a cooperative object network) the network
lifetime is prolonged by keeping the nodes in the so called ’asleep’ state in which the interface is not
operational, nodes cannot transmit or receive packets, but the energy consumption is much lower
(around two order of magnitude smaller than the cost in the idle state) as long as possible. The other
possible states include the idle state, in which the transceiver is operational but no communication
exchange is taking place, and the transmit (receive) state in which the transceiver is operational
and is currently transmitting (receiving) a packet. The exploitation of the scheduling between awake
states (idle, transmit, receive) and asleep state is one of the basic tools used by energy-efficient
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protocols for decreasing energy consumption. Other techniques include minimising the amount of
transmitted information, avoiding the waste of resources, transmitting only when it is likely that the
data will be received correctly, minimising protocol overhead, and designing awake/asleep schedules
that do not increase significantly data latency. In many sensor network applications the low trans-
mission range translates in the need of keeping the transceiver asleep as long as possible. Thus,
decreasing the amount of information transmitted and the corresponding overhead is still an impor-
tant knob for tuning energy-efficiency. By reducing the load it is possible to decrease the amount of
time devices have to be in the awake state.

Some solutions have been developed for minimising the load of the WSNs which are based on
the elimination of the redundancy in the transmitted data. In a WSN many nearby nodes detect the
same or similar events, so that the information they transmit is highly correlated. Some of the relay
nodes can thus buffer a few packets, and process them eliminating redundancy. This process is
often referred to as data aggregation or data fusion. Data fusion reduces the amount of transmitted
data (thus possibly the energy consumption) at the price of increased latency. Other trade-offs which
have to be considered in the design of a good data aggregation strategy are energy vs. robustness
and energy vs. accuracy. Depending on how data fusion is performed at the aggregation points the
precision with which an event is reported may be compromised. It is possible to simply concate-
nate in the same packet the data of several packets (saving in terms of header bytes). However,
the majority of the advantage that can be obtained in decreasing the load comes with techniques
which combine the data. The drawback here is that this approach results in partial decrease in pre-
cision/accuracy. A second problem is that the inherent redundancy of the transmitted information
makes the data delivery process more robust in presence of transmission errors. If redundancy is
avoided then aggregated packets should be strongly protected to avoid their corruption or wrong-
ful delivery. An effective solution for data fusion has to consider all these different trade-offs, so that
data fusion is maximised while maintaining data latency, accuracy and robustness degradation within
limits tolerable for the specific application.

Data fusion has two aspects: a scheme to select the roles of the different devices that act as
aggregators (aggregation points: How many of them? Where located?), and the data fusion strategy
used at these points (how to determine which data to aggregate, how long is it worth waiting or for
how many packets before aggregating and forwarding, etc.). Data fusion should also be combined
with other protocols (data link, routing, etc.) for further optimisation.

In the following we survey the most recent works in the area of data aggregation.

4.6.1 Types of aggregation

Packet-level aggregation This scheme works by dropping duplicate packets and by merging sev-
eral packets to reduce the overhead due to header transmission. This technique can always be
applied only affecting data latency. No loss occurs in terms of data precision. No compression of
highly correlated data is performed.

Total aggregation In this case, all data received within a given time interval can be fully aggre-
gated. This kind of aggregation can be realistic for given types of queries. For instance, when the
average temperature in the area monitored by the networks is needed at the network collection point
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(the sink), an aggregation tree could be built rooted at the sink in which each internal node can be an
aggregation point. Each point has simply to collect from each of its children the average value of the
temperature, and the number of samples it was obtained from. All these values are then combined
to form a single packet that conveys the average temperature in the area monitored by the point
sub-tree. The size of the packet which will be sent out, containing the new average and number of
samples, is the same as that of the packets received at the point.

Geographic aggregation This scheme of aggregation, proposed in [2], assumes that data related
to certain events can be aggregated if their sources are geographically close and the events happen
within a certain time interval. This implies that data precision is maintained. (The precision here
refers to both geographical place of the events and the times of their occurrence.) Such aggregation
tries to model scenarios in which the sources can classify events and send a code classifying an
event, together with the time of occurrence, and the location to the sink(s). With this time of aggre-
gation, aggregation points away from the sources of the events may not be able to aggregate data.
To obviate these problems, [2] proposes to enhance the method by co-locating aggregation points
with cluster-heads, i.e., specific network nodes chosen in such a way that aggregation points are
well-spread throughout the network.

In [115] the authors point out the major pros of data fusion. Many of the queries asked by users
require to aggregate and combine the data generated by the sources (so why not to perform such
processing aggregation in the network instead of at the final destination, saving energy and network
resources?). In-network aggregation also allow for comparison of different measurements of a given
event before transmitting the information to the sink(s). A comparison among different samples at
the aggregation points allows the identification and filtering of false or inaccurate measurements
performed by faulty or malicious sensor nodes.

There is a huge difference in terms of network load when answering an average or a median
query: The first can be answered by delivering aggregated information, the second needs to bring
to the sink(s) information on the distribution of the sensed values. The solution proposed in the
paper addresses exactly this problem, proposing a representation of value distributions which allow
us to answer the listed types of queries with a bounded accuracy while compressing significantly the
amount of information which have to be disseminated in the network. This is achieved by defining
and transmitting compressed information on the measured values distribution, denoted as quantile
digest. Quantile digests can be combined by aggregation points without compromising the resulting
accuracy, and can be used at the final destination to answer quantile, range and consensus queries.
The amount of transmitted information is significantly reduced over the case in which all the sensed
data have to be reported.

[32] describes a security problem associated with data fusion. The current data fusion process
puts a great deal of trust on aggregation points. Not only a consensus-based mechanism is needed
to filter out information transmitted by malicious nodes, but also a scheme has to be designed for the
sink(s) to have proof of the validity of the reported aggregated information, since aggregation points
themselves may be faulty or malicious. The way this problem is solved in the paper is by adopting a
witness based data fusion node assurance scheme. It is assumed that there are more nodes which
gather the same data and result in the same aggregated packets, even if only one aggregation point
reports such results to the sink(s). Such nodes know of each other. Each node computes a summary
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of the results and encrypts it sending it to the selected aggregation point which will have to transmit
all such summaries together with the aggregated data to the sink(s). The final destinations will then
be able to compare the summaries of the witnesses and of the aggregated data and use a voting
scheme to decide if the reported data is reliable.

4.6.2 Selection of the best aggregation points

In [98] a way to select aggregation points is presented. The goal is to maximise the aggregation
gain (the reduction in terms of network load achieved via data fusion) while maintaining the end-
to-end latency below an application dependent threshold T. A static sensor network with a single
sink is considered. The authors provide a mathematical formulation to select one single aggregation
point per path in order to maximise performance. Heuristics are then derived from this formulation
and integrated with WSN routing (tree-based or directed diffusion based routing). A performance
evaluation shows the advantage that can be achieved by means of such way of selecting aggregation
points with regard to more empirical approaches. The paper also has the merit to point out how
latency paid for sake of data fusion should be rewarded by a significant amount of aggregated data,
so lower or higher latency spent at aggregation points should depend on the amount of data that can
be fused at that aggregation point.

In [117] the authors assume a set of aggregation points and address the problem of setting the
timeouts at the different aggregation points encountered along the source-destination paths. As-
sumptions are periodic transmission of data from the source to the sink, and adoption of a tree-
based converge-casting. Three different approaches are compared: 1) periodic simple, in which all
the packets received within a time T are aggregated, 2) periodic per hop, in which an aggregation
point waits to receive data from all its children in the dissemination tree before it sends the aggre-
gated packet out (recall the traffic is periodic), and 3) the proposed approach named periodic per
hop adjusted. In this latter approach the authors envision to use cascading timeouts. Not only do
timeouts depend on the aggregation point position in the dissemination tree but a node timeout will
happen just before its parent. In this way a cascading effect (i.e. data originating at the leaves
will be clocked out first, reaching nodes in the next tree level in time to be aggregated at that level
together with the data originated at that level and so on) reduces the overall latency to reach the
sink. Comparative simulations among the different schemes show that, as expected, a cascading
timeout based scheme allows to reduce latency without impacting the resulting received data accu-
racy. Similar ideas have been reported in [133] for the case in which the WSN traffic is event-based.
The authors discuss the potential inefficiencies associated to data fusion in case timers are not syn-
chronised: though the packets sent by sources are generated at similar times as they detect the
occurrence of an event, unsynchronised settings of the aggregation points timers may result in an
aggregation point at level i not being able to gather information from the nodes at level i+1 before
performing aggregation. To avoid this problem each aggregation point starting its timer informs its
neighbours triggering also their timer start, and timers duration depend of the aggregation point level
in the tree. The solution proposed exploits synchronisation and different timer settings at the different
levels, to allow a node at level i to gather information from the previous levels before its timer clocks
out.

In [19] it is proposed to exploit clustering to select cluster-heads as aggregation points. In addition
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the paper proposes to assign an interval of possible values to each metric of interest and to select
critical values for each measured metric. A pattern code is then computed based on the measured
values and sent to the cluster-head. The cluster-head uses this aggregated implicit information of
the data gathered by the sensor node to deduce whether some of the data to transmit are redundant
and to avoid redundant transmissions before they occur. Redundancy is thus eliminated by pattern
code exchange between the sensor nodes and their cluster-head and by the cluster-head deciding
based on such codes which sensor should send data. This also allows to avoid security problems
associated to cluster heads receiving data and having to decrypt them to perform data fusion op-
eration. In the proposed scheme, denoted EPSDA (energy-efficient and secure pattern-based data
aggregation), data encryption is performed end-to-end by means of symmetric cryptography. A way
to select aggregation points in a hierarchical WSN organisation is also proposed in [7], based on an
ILP formulation which jointly addresses aggregation points selection and routing. In [89] the authors
define a metric to evaluate the level of compression achieved via data fusion. Variants of protocols
for data dissemination proposed in the literature (LEACH and PEGASIS) are then proposed in order
to maximise the possibility to perform aggregation. It is shown how the extended solutions decrease
network load and energy consumption without significantly affecting accuracy over the basic LEACH
and PEGASIS schemes.

In [113] the authors claim that instead of grouping devices into clusters based on a distance-based
criterion, the hierarchical tree-based communication infrastructure used to deliver the data back to
the sink should be designed so to group in the same subtree nodes which belong to the same
group. Group affiliation is attribute-based and reflects the possibility to answer similar queries and
to lead to possibly redundant, merged data (in addition to the affiliation to the same group devices
are organised into a tree also based on a distance criterion so that highly correlated data are likely
to have such redundancy eliminated close to the sources). This groupware based tree results in
significant increase in terms of capability to effectively aggregate data. In addition the TINA (temporal
coherency aware in Network Aggregation) scheme is adopted. New data are reported only when
they differ significantly from the last reported data (how significantly is an application-dependent
factor which is communicated via interest dissemination). Overall the two schemes combined lead
to significant energy saving.

In [41] an adaptive scheme to determine how many packets to wait for (and how much time to wait
for) before performing aggregation is proposed. First the authors propose a solution in which, instead
of waiting for a fixed amount of time or a fixed amount of packets, an aggregation point simply tries
to exploit the availability of the wireless channel at most. If the channel is available the aggregation
point transmits a packet aggregating the queued packets. This reflects for example the following
way of reasoning. If data aggregation and awake/asleep schedules are decoupled there will be
some times in which the aggregating device has its transceiver operational and in which the channel
is free. Transmitting or delaying transmission does not significantly change the energy consumption
(as the costs associated with transmitting or being idle when the transceiver is operational are similar
in these networks), but can severely affect the end-to-end latency so it may be convenient to transmit
anyway. This scheme is named the on-demand scheme. What is not considered in this scheme is
that a single device decision to transmit may impact the possibility of another device to do the same
in a CSMA/CA based network. What would be interesting to have is a dynamic scheme which adapts
its decision to make the MAC layer operate at a desirable operational point, limiting on one side the
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amount of transmitted data (aggregating several packets in the queue in each packet sent out) but
also maintaining a low latency. This is the idea behind the proposed dynamic feedback scheme
which adopts a dynamic controller to achieve this goal. Simulation results show that schemes which
rely on fixed thresholds the proposed solutions achieve the best compromise between decrease of
network load and latency. The dynamic feedback scheme is particularly valuable as it is able to
operate efficiently under varying network load conditions.

4.7 VF: Resource Management

Generally speaking, COs are battery powered devices that usually lack resources, such as CPU,
memory, and power, to name a few.

COs may form a self-organising network, in which COs arbitrarily join and leave the network or
even move during an operation. Since, system components are distributed, any action often in-
volves multiple COs at a time. Due to the distributed, dynamic, and uncertain (since both COs and
communication are associated with uncertainty) nature of system components, the design of such
embedded wireless collaborative systems prove to be difficult and requires an scheme to facilitate
the system design and application development.

Resource management aims at providing a way to manage the resources of a system in a way by
enabling high-level system primitives to hide unnecessary low-level details. It enables the application
to be independent of the actual underlying distributed system. It should also address the dynamic
nature of available resources, such as variable network bandwidth. Because the system is built of
fault-prone components, failures should be handled as normal and not as exceptions.

4.7.1 Design challenges

Traditionally, system software aims at providing a unified way of using underlying resources. System
software operates the system and manages available resources in a way that provides higher-level
services that are usually required. System software consists of three major components:

• Operating system (OS): the OS aims at providing a set of services that are generally needed
by application developers, such as starting and stopping processes or allocating memory and
other resources. These services make the system much easier to manage, since the actual
low-level details are kept hidden from the application developer. The operating system provides
a unified interface to use resources and also manages its allocation among incoming requests.

• Protocol stack : communication software is decomposed into a set of standardised layers, re-
ferred to as a protocol stack. Different layers provide different abstraction levels of generally
needed networking services. Layers use some of the underlying services to provide some
higher-level services. It aims at hiding the heterogeneous low-level details of the network. The
standardisation of these layers played a significant role in the success of Internet deployment.

• Middleware: it is a reusable system software that bridges the gap between the end-to-end
functional requirements and the lower-level OSs and protocol stacks. Thus it is a piece of
software running in each member of the network, and its goal is to provide high-level services
that are independent of the heterogeneous underlying systems.
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The layered design has proved to be a very successful approach to design complex systems.
Defining high-level interfaces to easily use underlying complex functionality makes application de-
velopment easier, but unfortunately makes the tuning of non-functional properties extremely difficult.
These properties usually remain spread across several system layers, thus, it is impossible to make
modifications to them in a single place. Energy-efficiency or fault-tolerance are such non-functional
properties. Optimisation issues, such as energy-efficiency, usually require special details that may
be hidden by the interfaces. Higher layers can make better decisions by working together with the
operating system, and sometimes it is beneficial to influence the behaviour of the OS to meet some
higher level needs. Optimisations in separated layers may not achieve a global and synchronised
goal. A well known example is the unfortunate action of the operating system to put the system into
stand-by while the user is giving a presentation.

In networking, the layers of the protocol stack are defined in a way to let them be developed
independently. However, a number of dependencies and redundancies among different protocol
layers make the communication energy inefficient. In [40] and [28], in which the cross-layer nature
of low-power ad hoc wireless network design is characterised, it is shown that cross-layer design is
more energy efficient.

Therefore for energy-efficient design, the traditional strict modularisation or layering is not appro-
priate. For example in sensor networks, the monolithic design of communication software is common
to reach the required energy-efficiency needs. However such a design makes system development
and management very difficult. In the next sections we will present solutions that allow both de-
velopment and management easy, and at the same time allow for optimisation of non-functional
properties.

4.7.2 Adaptation in Resource Management

In embedded wireless collaborative systems, the availability of the underlying resources is highly dy-
namic. For example the networking conditions may change frequently, thus, the available bandwidth
and the certainty of communication varies. Such a change may influence the chosen networking
layers or possibly would change the whole behaviour of the application. The traditionally applied ap-
proach of a resource request and its allocation does not provide the needed flexibility any more [94].
The system must adapt to changes in the surrounding physical and virtual environment. Instead of
allocation, a resource negotiation should take place and allocation of available resources should be
adaptive. Adaptation is the ability of a system to change its behaviour in response to environmental
changes.

Early experiments highlighted that in the case of dynamic underlying resources, the ultimate goal
of resource-management is to combine adaptation with allocation. It is not beneficial to handle the
system as a transparent entity with fixed services; instead the system should allow the negotiation of
resource demands and supplies. To manage such dynamic resources, the system software should
meet new requirements. It should drive the negotiation of resource demand and supply together with
the applied mechanisms based on the environment.
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4.7.3 Adaptation and Enabling Technologies

Over the years, various technologies have contributed to the evolution of adaptation and reconfig-
urable software design [5, 76]. Since the main aim is to enable the software to reconfigure itself
dynamically based on some conditions, the core of the majority of approaches is the interception
and redirection of interactions among software entities.

Middleware Middleware is defined as a piece of higher-layer software present in each member of
a possibly heterogeneous network [29]. Its purpose is to provide high level services to make the
development of networked applications easier by hiding details of the underlying infrastructure such
as operating system and network protocol details. Since it represents another level of indirection and
transparency, it is a straightforward way to provide adaptive behaviour.

Middleware is commonly divided into four layers [111]. Host infrastructure middleware is directly
on top of the operating system and provides a high-level API to hide lower level heterogeneity. Dis-
tribution middleware provides high-level programming models, such as remote objects, enabling the
developers to use local and remote objects in a similar way. Common middleware services define
higher-level domain independent components to help managing resources. Finally domain-specific
middleware is usually designed especially for a particular class of applications. Any of these middle-
ware layers may be a suitable place to provide adaptive behaviour.

Many of the adaptive middleware platforms work by intercepting and modifying messages to pro-
vide a level of indirection to influence behaviour of the application. Most of the adaptive middleware
approaches are based on some popular object-oriented middleware platform such as CORBA or
JavaRMI. A huge number of adaptive middleware approaches exist, their taxonomy can be found
in [77].

However middleware based adaptive frameworks may not be sufficiently flexible; their application
is straightforward from the software development point of view. These solutions may provide a way
to extend heterogeneous, layered systems with the ability to adapt.

Component-based design Software decomposition to separate modules has become a funda-
mental approach to make the development of reusable components independent of each other.
Software components are reusable software entities that third parties can develop independently
and can easily be composed and deployed as general components in the future [122]. Popular
platforms include COM/DCOM [79], .NET [78] and Enterprise Java Beans [120]

Well-defined interface specifications enable service clients and providers to be developed indepen-
dently, however, it turns out that the specification of the functional interface usually does not provide
enough flexibility to reuse the component. The details of how the component would behave in certain
conditions are usually crucial to design choices. To trust a component, specific guarantees should
be available regarding to its non-functional properties. These guarantees are called contracts [15].

Contracts may be categorised to four levels. Level 1 is the basic or syntactic level that defines
the functional interface needed to use the module. Level 2 provides behavioural level contracts,
which gives more information about how the functionality reacts in different conditions. Level 3 is the
synchronisation level, which describes synchronisation properties required in parallel environments.
Finally, level 4 describes quality-of-service properties, such as response delay.
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The composition of modules can be categorised into two large groups. In static composition, the
developer chooses the appropriate composition at compile time and it cannot be changed later in run-
time. Contrarily, dynamic composition makes it possible to add, remove or reconfigure components
during the runtime operating. Late binding is the technology that enables coupling of compatible
components at run-time.

The system may also support multiple different versions of a given component with different con-
tracts. In such cases, this may be an enabling technology to adaptively select the versions that are
the most appropriate for the given environmental conditions.

Computational reflection Computational reflection is the ability of a software system to reason
about and possibly alter its own behaviour [73]. Reflection exposes a system’s implementation at a
level of abstraction that contains enough details and enables necessary changes. The ability of a
system to observe and change itself is a key enabling technology towards self-modifying code.

Computational reflection involves two activities. Introspection allows the system to observe its own
structure or behaviour. This may involve revealing its structure or evaluation of software-sensors to
collect statistics. The other main act is intercession that enables the system to act on the observa-
tions and make necessary modifications. This may be the replacement of a module, or installation
of new monitoring components.

In reflective systems, the actual base-level software includes its abstract self-representation as
a special object. This is called a meta-level representation, which represents the actual objects of
the base-level. The two levels should remain causally connected, remaining consequent during the
changes made.

The direct exploration of the meta-level would provide many details about the base-level objects,
but it also makes the process difficult and error-prone. A meta-object protocol (MOP) [57] is a higher
level interface that enables easier introspection and intercession by enabling systematic access to
meta-level objects. MOP can be categorised as enabling either structural or behavioural reflection.
Structural reflection reveals inner structural details, such as class hierarchy, object interconnection
and data types. In contrast, behavioural reflection focuses on higher-level computational semantics
of the application, such as the application of a new mechanism.

Reflection may be provided by a programming language in a native way, such as in Lisp [116],
Python [95] or in some Java derivatives such as Reflective Java [131]. Even if the programming lan-
guage does not directly support reflection, similar functionality can be implemented in a higher level,
using a middleware platform [16], such as KAVA [127] or OpenCorba [66]. Instead of programming
construct representation, reflective middleware deals with the self-representation of middleware ser-
vices.

Such reflective abilities of a software system obviously play a key role to provide adaptation.

Separation of concerns Over past years, some major difficulties in software decomposition have
been revealed [86]. Consequently, it was realized, that the same functional behaviour can be imple-
mented with several different decompositions, which are completely different when future changes
have to be made.

Separation of concerns [1] is a software development technology that aims at separating the de-
velopment of the application’s functional behaviour (business logic) from other non-functional re-
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quirements. The non-functional concerns are usually cross-cutting concerns spread across several
modules, such as QoS, energy consumption or fault tolerance. This approach enables the sepa-
rate development and maintenance of concerns, while providing a straightforward opportunity for
adaptation.

The most widely used approach is Aspect Oriented Programming (AOP) [59]. It includes abstrac-
tion techniques and language constructs to manage different concerns of the system separately. The
codes implementing different concerns, called aspects, can be developed separately. Pointcuts are
placed into the functional code to sign the locations where different aspects may be woven. Finally
a specialised compiler called aspect weaver is used to combine aspects with the business logic of
the application (figure 16). Examples of such AOP frameworks are the AspectJ compiler [58] and
KAVA [127].

Business logic
with pointcuts Aspects

Weaving

Woven Code

Figure 16: Aspect weaving in AOP

Composition Filters [14] is an approach that dynamically intercepts messages that are sent and
received by components. Filters can be applied to all input and output messages or can select
particular messages. Such filters are developed independently and can be compiled into the source
code or can be preserved as run-time manipulation objects.

Similarly, aspect weaving at compile-time results in a tangled executable, which is not reconfig-
urable later. However some recent approaches delay the weaving process till link- or run-time [124],
thus providing a way to tune different aspects of the system during execution.

4.7.4 Adaptation frameworks

This section introduces some of the most important cross-layer adaptation frameworks and projects.
These frameworks assume mobile devices that are more resource rich than wireless sensor nodes,
while in the project COs are of interest. However, these frameworks present interesting adaptivity
concepts that could be at least partially implemented in smaller devices to achieve a desirable degree
of resource management.
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Odyssey Odyssey [85] was one of the early attempts to demonstrate application-aware adaptation.
It demonstrated how application-awareness would result in enhancements of system performance.

Odyssey supports the change of application quality based on low-level system conditions. When
the system cannot guarantee the required supply, the application should regulate its demand. The
project demonstrated the effectiveness of the approach by scaling down video quality in case the
bandwidth decreased.

The key point in Odyssey was to extend the operating system resource allocation API with re-
source call-backs. Applications register a tolerance window in Odyssey and receive a callback when
the required resource levels cannot be kept within the tolerance window. At that point, the application
can adapt and the new resource needs may be registered again. Only minor changes are needed
to port applications to Odyssey, and it is demonstrated that in some cases it is also possible to avoid
any changes.

In [82] Narayanan extends Odyssey to achieve a cross-layer adaptation solution especially to
support mobile interactive applications. These kind of applications require low response times and
long battery life, while the available resources are varying. Their work introduces the term fidelity
as a metric of accuracy. Data fidelity is the extent to which the degraded version of a data object
matches its reference version, on the other hand computational fidelity is a runtime parameter of an
algorithm that can change the quality of its output. The framework uses multi-fidelity computation to
achieve adaptive behaviour.

A major difficulty addressed in their framework is to bridge the gap between the three independent
parameter dimensions:

• user satisfaction metrics (utility)

• application parameters (fidelity choice)

• resource supply and demand of the system (resources)

The presented solution uses resource supply predictors to predict the available amount of system
resources, such as CPU availability. Performance predictors give performance metrics, such as
latency or battery lifetime, as a function of resource supply and demand, and resource demand
predictors compute application resource needs as a function of fidelity and non-tuneable properties.

Some of these predictions are application dependent. This is solved by providing an application
dependent binary module called hint module. Moreover the system has to be aware what fidelity
values are possible for the given application and what are the actually used non-tunable parameters.
These are declared in the application configuration file.

The architecture of the run-time system can be seen in figure 17, note that only the hint module
is application-dependent. The central component that drives the adaptation is the solver. Its task is
to search the state space of tuneable parameters and find a set of values that maximises the utility.
When the application starts, it passes in the values of non-tunable parameters. A set of generic
supply predictors predict the applications’ resource supply for the near future. The solver searches
the space of tuneable parameters for the best possible combination.

The evaluation of candidates is done by computing their utility, which is application-dependent. The
solver sends the tuneable and non-tunable parameters as well as the resource supply prediction to
the utility function. The utility function invokes performance predictors to compute latency and battery
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Figure 17: System architecture for multi-fidelity API

drain for the particular choice. Performance predictors call application-specific resource demand
predictors to compute performance.

Resource demand monitors compute the resource demand of the operations performed. The log-
ger records these values together with the applied parameters to update demand-predictors based
on online learning techniques.

The effectiveness of the framework is demonstrated by several experiments ranging from aug-
mented reality to speech recognition.

RAPIDware The aim of the RAPIDware project [96] is to design an adaptive, component-based
middleware for dynamic mission critical systems. These systems must continue to operate correctly
even during exceptional situations. Such systems require run-time adaptation, including the ability to
modify and replace components, in order to survive hardware component failures, network outages,
and security attacks. RAPIDware is a significant research effort, which applies the combination
of computational reflection and aspect-oriented programming to support software recomposition at
run-time.

Sadjadi et al. [105] present an adaptable communication component called MetaSocket. It is an
extension of a regular Java socket to provide adaptable communication services. A metasocket is
created using Adaptive Java [55], a reflective extension to Java.

To convert an existing Java class into an adaptable component two main steps are required. Fig-
ure 18 illustrates the two steps on a multicast socket component, which enables it to adapt to meet
different QoS needs. The first step is called absorption, which transforms the class to a base-level
Adaptive Java component. This base-level class has a set of mutable method invocations, which
expose the functionality of the absorbed class. In the example, the absorption steps create a send-
only multicast socket, which implements only the send() and close() adaptable invocations. Links
between invocations and the methods are highlighted by lines in the figure. The following step is
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called metafication, which enables the systematic investigation and changing of base level invoca-
tions. In the example, this means to insert or remove filters to the multicast stream, such as different
error-correction filters. By this, the socket component is adaptable to meet different quality require-
ments.

receive()
send()

close()

joinGroup()

leaveGroup()

send()

close()

send()

close()

insertFilter()

getStatus()

removeFilter()

absorption metafication

base-class method

base-level invocation

meta-level invocation

Figure 18: Metasocket absorption and metafication

These steps use TRAP/J [106], a Java implementation of TRAP, to weave in the required adaptive
behaviour. The framework takes an existing Java class together with the list of required adaptable
invocations as its input, and makes the required adaptable class as its output. It uses the AspectJ
compiler [58] to generate the adapt-ready version of the application.

A MetaSocket enables the middleware or an application to monitor the communication status and
to insert, remove and configure adaptation filters at run time. With the help of MetaSockets, a kernel-
middleware interaction framework was provided in [108] to support both horizontal and vertical coop-
erating of components. The Kernel Middleware Exchange (KMX) project addresses the interaction
between the middleware and operating system layers to support such an universal adaptation. This
approach is especially well-suited to mobile ad hoc networks and overlay networks, where a set of
nodes collaborate to accomplish collaborative services.

This framework thus provides an interesting mixture of aspect-oriented programming and reflection
to easily turn software components to adaptable ones. Their work also points out, how an universal
adaptation framework can be feasible by using such components.

GRACE The Illinois GRACE project [4, 103] aims at providing an adaptation framework for saving
energy in mobile multimedia systems. In the considered system all the system layers and appli-
cations are allowed to be adaptive. These adaptive entities cooperate with each other to achieve
a system-wide optimal configuration in the presence of variations in the available resources and
application demands.

One of the main questions addressed in this research is how to achieve global adaptation with
an acceptable overhead, since adaptation with global scope potentially results in larger overhead.
GRACE supports three levels to provide a balance between the scope and the temporal granularity
of adaptation:

Global adaptation is invoked only infrequently, in response to large changes in resource supply
or demand. It considers all applications and all the system levels. A global coordinator per-
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forms the resource allocation by searching through the space of all possible configurations and
evaluating the overall utility and resource usage for the particular choice.

Per-application adaptation considers only one application but all system layers at a time. At this
time, the accuracy about the resource demands of the actual application is more accurate, thus
making finer granularity decision possible.

Internal adaptation adapts only a single system layer or application at a time. It does not need to
consider the cross-product of configurations, it can be very efficient. Unfortunately, the system
may remain only in a local minimum of optimality.

Another main question this framework addresses is how to make the prediction of future demands
and supplies. All the adaptation levels require predicting the resource demands for each application.
Global adaptation requires long-term prediction, while per-application adaptation requires prediction
only for the next job. For the short-term, history-based prediction techniques are commonly used.

The prediction is not straightforward, since the resource usage depends on the actual system and
application configuration in use. The approach in GRACE to address this problem is to divide the
prediction problem into two parts. The system-independent part can be predicted entirely by the
application. The other is the system-dependent part, which is handled by the specific system layer.
For example the CPU time demand of a job can be divided into the number of instructions and the
time per instruction parts. The former is independent of the system, while the latter depends on the
actual configuration.

GRACE provides an architecture for the optimisation process as well. This framework controls
when different levels of adaptation are triggered and also finds the optimal configuration. In the pro-
posed solution, local and global adaptations together allow the system to find a better configuration.
The simulation-based evaluation shows the benefits of the solution.

DEOS The DEOS project addresses the problem of how to best meet the dynamic Quality of Ser-
vice (QoS) requirements of end users in face of dynamic changes in the underlying hardware/software
platform’s resources. However the project mostly focuses on QoS issues. The proposed solution in-
volves both the system and the application.

In the project, Q-fabric [90, 91] is presented. Q-fabric is a kernel level abstraction for cooperative,
distributed resource management and adaptation. The solution is based on a kernel-level event
notification service, which follows the publish/subscribe paradigm to exchange specific events. Such
events may be related to monitoring activity, or can also be the trigger event of an adaptation process.
Since the event service is fully anonymous, it is a flexible way to let separate local resource managers
cooperate.

A resource manager can be seen in figure 19. Its task is to distribute system resources among a
number of competing applications based on a policy. The monitor entity keeps track of changes in re-
source allocations and keeps statistics, and it also submits monitoring events. The adaptor receives
such events and decides about triggering changes either in local or remote resource allocations.

The approach can be combined with middleware level mechanisms [92]. By combining a middle-
ware with such a kernel event service allows the flexibility of a global resource management. Such
a resource management framework may also be important to coordinate adaptation.
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Figure 19: A resource manager

ECOSystem Zeng et al. [134] presents ECOSystem (Energy-Centric Operating System), which is
an approach to let the operating system manage energy as a first-class system resource. It manages
energy consumption at the OS level and also influences applications in their energy consumption.

Their energy-centric resource management is based on currentcy (current currency). Currentcy
is a model reflecting the relative price of the energy, and thus influencing the amount the system can
spend on. Currentcy reflects the ratio of supply and demand and provides a way of efficient resource
management in case of resource shortages.

The project has demonstrated the effectiveness of the approach in a Linux environment. Its basis
is the accounting of energy consumption of processes. The system specifies each tasks’ relative
importance and provides an energy-conserving allocation strategy as well.

Neugebauer et al. [83] introduces a similar approach, it applies energy pricing as well to use ideas
from microeconomy to efficiently manage resources. In the presented model, a price is calculated
for resources that are congested. These prices capture the ratio of demand and supply. These
resources are charged afterwards, thus price represents a meaningful feedback to applications.

The project uses the Nemesis OS [51]. The Nemesis OS shifts many functionalities (e.g. protocol
stack) to the user level, thus avoiding anonymous resource allocations. This makes more accurate
resource accounting possible.

Both of the approaches use the operating system to account resource prices and to figure out the
relative usage costs. They enable a distributed solution to resource management and adaptation.

4.7.5 Adaptation categorisation and its parameters

One criterion for classification of adaptation is whether the system is capable of the free recomposi-
tion of its components or just uses some built-in settings. Parameter adaptation is the modification of
variables that influence the behaviour of the component. This requires built-in support for the given
parameter and also the interface to modify it. In contrast, compositional adaptation involves even
the adaptation of new algorithms and the run-time recomposition of the software. The latter enables
a very general ability to adapt, however, the former is much easier to implement. In the former, the
time of composition may entirely influence the flexibility of the solution. Development time adaptation
results in a hardwired ability to change behaviour. Composition may occur at compile, link, or even
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load time, however they all result in a static composition. In contrast, runtime adaptation results in a
completely dynamic system.

To choose the most suitable adaptation approach, following parameters should be taken into ac-
count:

• The best configuration: when the adaptation of the system occurs, the goal is to find the
most appropriate configuration for the new environmental conditions. In the majority of cases
selecting the most optimal configuration leads to further complications. When investigating
the possible candidates, the outcome of choices should be predicted by the system. This is
not easy even in a simple case, moreover a number of adaptable components and all their
available cross-compositions may result in a huge configuration space. The system should
search through this space and figure out the new configuration. This may result in a significant
overhead.

• Scope of adaptation: to limit the number of available configurations, it is crucial to investigate
the scope of adaptation. A global adaptation involves all the adaptable components of possibly
several networked entities. The scope may be limited to (i) a node, (ii) to one of its applications,
or (iii) even to a single module. Unfortunately, limiting the scope may result in the miss of the
best configuration.

• Time of adaptation: an important choice is when the adaptation should occur. Adaptation may
happen continuously, however in more complex cases it may result in a large overhead. A way
to avoid this is to allow adaptation on a periodic basis, however this may still result in a large
amount of unnecessary overhead. The most sophisticated approach is to do adaptation on a
reactive basis. This means that the occurrence of some conditions would trigger the system to
find a more optimal configuration.

• Resource supply and demand : there may be severe reasons for a need to change in the
behaviour of the system. To capture these conditions, some monitoring functionality is required.
Continuously monitoring a large number of quantities may result in a significant overhead, so
it is better to monitor only those parameters that are actually necessary. Conditions that may
trigger adaptation may the result of a change of either resources or demands.

The triggering event may be related to some hardware level resource changes. For example
the change from AC to battery supply would result in changes that the application would do.
On the other hand, a significant change in the application resource needs may also trigger an
adaptation, since it would influence the applied allocation strategies. In many cases, changes
in network conditions should result in an adaptation as well. Network bandwidth is the classical
example of a highly dynamic resource that highly influences services that higher layers may
use. Another and more general category of operating conditions is the context, for example the
detection of the user or location in which the system may operate in.

• Agility : an important property of adaptation is the speed at which it can occur. A straightforward
approach would be to let the system react as quickly as possible, but other problems may arise.
It is possible that the new configuration is valid only for a very short time, thus the system would
never settle down in a stable state. For example when resources change very quickly, it is better
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to select a safe parameter set and not to follow the bandwidth changes. The adaptation should
result in a stable configuration.

• Place of redirection: the basis of most adaptations is the redirection of module interactions.
The question arises where the redirection should occur. The entity that drives the adaptation
may be built entirely in the operating system, but may also lay outside and handling the entire
OS as an adaptable layer. A large number of higher level solutions are available that push the
interception and redirection of modules up to the middleware.

4.7.6 Future direction of adaptivity in WSN

DCOS (Data Centric Operating System) [34] is an operating system for wireless sensor networks.
In these networks, the resources on the nodes are extremely constrained. DCOS was designed to
fit inside the limited memory of a sensor node while being able to provide real-time guarantees and
energy-efficient operation.

Sensor networks are usually driven by events, which can range from environmental phenomena
to software events. DCOS applies the so called Data Centric Architecture, where data is the main
abstraction of events. The system is built of software components called Data Centric Entities (DCE).
These entities produce data and they can be triggered by other data. Therefore, the operation of the
resulting system depends on what kind of data types are produced and what entities are triggered.

The central element of this architecture is the Data Centric Scheduler. It is the component that
keeps track of all the entities inside a node and decides which ones to activate. Moreover, this
element is responsible for managing how components should be connected and enables the data
flow between them.

DCOS is a dynamic system, which is able to adapt its functionality. Several DCEs may exist with
the same behaviour, and possibly several sequences of DCEs result in the same functionality. DCOS
supports run-time reconfiguration to adapt its functionality to create the most efficient configuration.

Thus, the architecture provides a simple and straightforward way to indirect software interactions.
This ability is the main enabler of adaptive behaviour. A next step to have adaptive behaviour on a
WSN-wide scale is to extend the concept of Data Centric Architecture to the whole network.

4.8 VF: Time Synchronisation

Time synchronisation is an important vertical function. Applications need to establish a common
sense of time among the cooperating objects participating in their sensing and actuation goals.

Forest fire monitoring is a scenario that requires not only the information of whether there has
been an indication of fire but also where and when this is happening. The collected sensor data
provides the basis for the decision making process which may trigger actions to be taken in the
monitored environment in order to address abnormal circumstances. Thus, the true time of the
observed events is crucial to the prompt action of fire fighting.

It is sufficient to associate local clock timestamps with the sensor data when decisions can be
made locally. For instance, the decision of regulating the fluid flux of an industrial pipe may be taken
locally and actions would follow through local CO actuators, for example, a regulating valve.
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However, there are cases where the collected sensor data will be aggregated from various coop-
erating objects at various points inside the network. To perform such a function, the data need to be
timestamped at the source.

In this case, the data originates from multiple sources which may or may not agree on a similar
time. Thus, a common view of time among the COs is an essential aspect to correlate multiple
sources of sensor data in order to produce a consistent and reliable result.

We list two time frameworks that could suit the CO applications:

• Relative time: the sense of time is established with respect to an agreed time reference which
could be an elected CO among a specific group. This is applicable to scenarios where pre-
serving the order of events is the only required function from a time synchronisation service.

• Absolute time: in other cases preserving the order of events is crucial but it is not the only
functionality needed. Applications might require event data to be timestamped when they oc-
curred with an absolute time value with respect to a true time standard such as the universal
coordinated time (UTC).

Messages containing the event data could take different routing paths in the network to be trans-
mitted from the CO sources to the sinks. When the application requires strict order preserving,
relative time could be used. It is important to note that absolute time is applicable to scenarios
where the applications need both order preserving and a sense of true time.

The measurement of structural vibration in a building requires that the data collected from the
instrumented cooperating objects be associated with an absolute timestamp. As it is important to
correlate the time of day of the happenings in this case, the clocks of the COs must be synchronised
with each other with respect to a true time. This would allow engineers to analyse data regarding the
entire building structure and from the neighbouring buildings.

Some of the challenges that impact the design of ad-hoc time-synchronisation protocols are dis-
cussed in [102, 121]. We present a summary of these issues here:

• Energy efficiency: sensor network applications often require nodes to be small and cheap.
The device size poses physical limitations to the amount of energy that can be stored in a
battery using the current technology. In some scenarios the charging of a depleted battery
or the replacement of discharged ones could be extremely difficult and expensive. In some
oceanography monitoring applications where the physical access to the deep water is through
a boat expedition the COs deployed should strive to be energy efficient. Thus, it is impor-
tant that the time synchronisation service strive to achieve energy efficiency. This brings the
question of whether GPS devices often used for time synchronisation on the Internet could be
adopted in inexpensive sensor networks. The issues to be addressed are cost, size and power
consumption of GPS receivers.

• End-to-end latency: in some scenarios, the network may be partitioned because of changes
to the network topology (e.g. mobility of nodes or addition/removal of COs). In this case, the
latency between any two points in the network may be difficult to estimate because of the large
variations in latency. This can introduce problems to the design of protocols that rely on stable
latency characteristics of network paths to achieve high and predictable accuracy.
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• Infrastructure: in some applications the network will be created in an ad-hoc setup. Although
such foreseen applications would represent a niche market today, self-organising protocols
that can create an overlay for time synchronisation should be considered in the design space
of protocols. The Network Time Protocol (NTP) [80] hierarchical structure may not be easily
adapted to this type of ad-hoc network topology.

• Configuration: a few human operators will be responsible for a large number of cooperating
objects possibly in the order of thousands. The configuration usually carried by system ad-
ministrators who manually specify the time servers for each node could be a serious problem.
The dynamics of this scenario demands a more automated system configuration than the one
found in time protocols such as NTP.

An important question to ask is whether the Network Time Protocol (NTP) [80] currently in use
on the Internet could be adopted without further modification in low cost wireless sensor networks.
This protocol has been used for more than ten years and proved to work reasonably well on the
Internet with thousand of nodes synchronised worldwide. The protocol is well known in the research
community and we refer the reader to a text book [29].

In summary, the NTP relies on an external time reference to synchronise the top layer of time
servers called stratum 1 servers. Servers in the second highest layers are called stratum 2 and so
on. The primary source of time in NTP is often the time pulse received with a 1 Hz frequency by a
GPS device locally attached to a server.

As the NTP protocol has been originally developed considering other design issues, some of the
challenges discussed above cannot be addressed if the protocol is adopted unmodified in sensor
network applications. One of the issues is energy efficiency as the external source of time (e.g GPS)
tends to consume more power than other components of a sensor node and does not work in indoor
areas which have no line-of-sight to the satellites. This is certainly not an issue in the case of the
Internet where the NTP server is a standard PC plugged to a power socket.

However the issue raised in [102] that the NTP protocol maintains a synchronised system clock by
regularly adding small increments to a system counter is an important one. This behaviour precludes
the sensor node processor of being switched to a power-saving idle mode. In addition, NTP servers
must be prepared to handle synchronisation requests at any point in time. This could potentially
introduce a problem as the communication module of a CO (e.g. radio) shows the highest cost
among the other components when it is transmitting or listening to any signal from the network.
Thus, this module could not be put in sleep mode in order to save energy.

GPS devices of small size and low power consumption have been developed and are now com-
mercially available. The Leadtek 9546 low-power GPS receiver [65] was recently integrated into a
sensor board of the Crossbow Mote [52]. These devices consume a current of 60 mA at 3.3V in full
operation. Despite the fact that such a consumption profile is higher compared to the micro-controller
current draw of 8mA, it is comparable to the energy consumption profile of the radio module.

However, such sensor nodes are optimised to operate in sleep mode most of time. If the GPS
is configured to operate occasionally to acquire the time signal, its energy consumption may not be
an issue. Although adding this particular GPS module to a sensor board increases its cost by 50%
today, we believe that the cost will drop significantly because of economy of scale. In contrast, this

c©Embedded WiSeNts consortium: all rights reserved page 58



Embedded WiSeNts Vertical System Functions

is also the case for the current cost of sensor nodes which are similar to the cost of a sensor board
equipped with GPS.

We list below some open issues with time synchronisation in large-scale distributed cooperating
objects and wireless sensor networks:

• The characteristics of the network topology in ad-hoc wireless sensor networks may intro-
duce severe delays because of disconnected parts of the network. To compensate for such
uncertainties, the time synchronisation protocol needs to be tolerant to the message delay
irrespective of its dominant source (e.g. processing, transmission).

• The clock drift in cheap oscillators could have values ranging from 10ppm to 100ppm which rep-
resent a drift between 0.036 seconds (10ppm) and 0.36 sec (100ppm) every hour. Therefore,
the update frequency used in time synchronisation protocols needs to be carefully considered
with respect to the characteristics of different types of hardware.

• The scope of time synchronisation is rather important. Some applications require ordering of
events occurring within a specific area, which means that only a subset of nodes deployed
in that area may be synchronised. However, other applications will need to correlate events
collected from different areas in a global scale.

• When some sensor nodes become responsible to provide the time reference to other nodes in
the network, the issue of trusting the source of time arises. Also, if GPS time signal is used in
some reference nodes a related question is how we can guarantee the authenticity of the GPS
time.

• Romer et al [102] suggest that calibration of sensors is a much more general and complex
problem than time synchronisation. The interesting question is whether the current proposed
time synchronisation techniques can be used for general sensor calibration problems. Also,
it may be the case that time synchronisation (at least for outdoor sensor deployment) can be
achieved by instrumenting low-cost, low-power GPS devices to sensor nodes as previously
discussed.

5 Summary and conclusions

This section presents summaries of the vertical system functions surveyed in this study. The sum-
mary of each VF follows a similar format. An overview of the VF is given, which is then followed by
a discussion of identified trends and relevant open issues.

The study WP3.1.1 (Applications and Application Scenarios) discussed a list of characteristics
and requirements of selected cooperating objects applications. Table 5 relates each of these re-
quirements to the VFs. The reader should refer to the document WP3.1.1 for a comprehensive
discussion on selected cooperating objects applications and their requirements.
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Characteristic/requirement (WP3.1.1) Vertical System Function Section
Network Topology – topologies to support either single
or multihop communication.

Communication; Dis-
tributed storage and search

4.3; 4.5

Scalability – necessary system support to growing num-
ber of COs.

Distributed storage and
search; Data consistency

4.5; 4.2

Fault Tolerance – provides the mechanisms for support-
ing the resilience of the system in failures.

Data consistency; Commu-
nication; Security

4.2; 4.3; 4.4

Localisation – determining a node’s location is the basic
required functionality for various applications.

Context and location man-
agement

4.1

Time Synchronisation – COs need to establish a common
sense of time.

Time synchronisation 4.8

Security – this is pervasive and must be integrated into
every system component to achieve a secure system.

Security, privacy and trust 4.4

Data Traffic Characteristics – the system should provide
support for various types of application traffic.

Communication; Dis-
tributed storage and data
Search; Data aggregation

4.3; 4.5; 4.6

Networking Infrastructure – CO networks can be infras-
tructured or infrastructureless (ad hoc).

Context and location man-
agement; Communication

4.1; 4.3

Mobility – the physical components of the system in
some applications may be static whereas in others, the
architecture may contain mobile nodes.

Context and location man-
agement; Communication

4.1; 4.3

Node heterogeneity – most of CO applications include
nodes that have distinct hardware and software factors.

Data lookup mechanisms;
Data consistency; Data ag-
gregation

4.5; 4.2; 4.6

Power awareness – power consumption is one of the per-
formance metrics and limiting factors almost in every CO
application.

Communication; Resource
management

4.3; 4.7

Real-time – the system delay requirements are very strin-
gent in real-time applications. The broad meaning of de-
lay in this context comprises the system data processing
and network delay.

Resource management 4.7

Reliability – guarantees that the data is properly received
by the applications.

Data consistency; Commu-
nication; Security, privacy
and trust

4.2; 4.3; 4.4

Table 1: Application requirements and vertical system functions
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5.1 VF: Context and Location Management

Distributed Cooperating Objects systems are designed to measure properties of the physical world.
They are, therefore, suitable for gathering the context of an entity, which is the information that can
be used to characterise its situation. Individuals, locations, or any relevant objects can be such
entities [13]. Since a reasonable amount of data is collected in large systems, context management
systems are needed to handle them. Such systems can separate applications from the process of
sensor processing and context fusion. To achieve precise actuation and detailed analysis of collected
measurement data, however, the location of sensors and actuators need to be known.

Changes in context may trigger actions to influence the monitored entity. Specialised actuators,
for instance, may be programmed to control pipe valves when a fluid pressure reaches a certain
threshold.

Trends. Classical context management systems use infrastructure-based directories to store the
information, for example Aura [39] and Nexus [49]. In the last years there has been a clear trend to-
wards ad-hoc (infrastructure-less) systems. Such systems reflect better the limited spatial relevance
of context since this is stored at or near the location where it is generated. Current systems focus
on the gathering of sensor data using quality of service specifications (MiLan [44]), the management
of context as cross-layer data in the network stack (MobileMan [27]) or more general for the whole
node (TinyCubus [75]), the storage of information in the network of cooperating objects at calculated
geographic locations (Geographic Hash Table [97]), the querying of information using a SQL-like
language based on the ‘network as a database’ abstraction (TinyDB [71]), and the self-monitoring
of cooperating objects ([135]) since they belong to the context themselves. Most of the systems
consider hybrid cooperating objects as well. MiLan presents also a further direction of research, the
simplification of the use of cooperating objects. The user specifies what it wants and not how.

Applications that use context to adapt their behaviour are called context-aware. Such applications
include visitor information systems (e.g. GUIDE), support in workspaces e.g. context dependent
configurations of mobile phones (TEA), or smart environments (e.g. Gaia) where facilities in the
environment interact with user devices. Also, applications based on ad-hoc networks are on the
rise. Due to this fact, adaptation of applications to the context is crucial. This can either be done
application-driven, i.e. the application decides which actions should be taken, or system-driven, i.e.
the system manages the adaptation transparently. The latter class has drawn attention in the last few
years. A few adaptive middlewares or frameworks have been proposed including Impala [68] which
is based on finite state machine or TinyCubus [75] which tries to select the best set of algorithms
based on several parameters, policies, and different adaptation strategies.

Location services for mobile ad hoc networks only offer limited context information- in this case
the position of mobile objects. A scalable, distributed location service is, e.g., GLS [67]. Prior to
storing the location in a such a service, the location has to be determined. Small cooperating objects
usually do not have a GPS device, so different methods have been developed in the last few years.
Two basic approaches are commonly used: having distances to three objects of which the location
is known, the own location can be calculated. The other possibility is to measure the angle to two
known objects. Since most cooperating objects are equipped with omnidirectional antennas, a very
accurate measurement of the angles is not feasible. Though, [74] shows that is it feasible and more
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accurate to use two directional antennas on small Mica2 nodes. Several methods exist to determine
the distances to other nodes: [36] uses received signal strength indication (RSSI) values delivered
by the RF chip in combination with an error model, [33] presents an algorithm for semi-static sensor
networks that works with hop counts, and [109] uses more accurate ultrasound and maps the location
estimation to a global non-linear optimisation problem which is approximated fully distributed.

Some open issues. Current context management solutions for ad-hoc networks focus only on one
part of context management. None cover the complete context management area with gathering of
data, in-node data management, in-network data distribution, and in-network data querying.

Positioning is still too inaccurate, better algorithms are required here. Also, for mobile cooperating
objects no good approaches exist.

5.2 VF: Data consistency and adaptivity in WSN

The benefits of having several nodes in a wireless sensor network (WSN) mostly come from the
fact that many nodes simultaneously monitor the same physical area. Nodes can be put into sleep
mode without any loss of precision in the network. This results in energy conservation increasing,
therefore, the network lifetime.

The reliability of the system is also improved with several sensor nodes. This scenario, however,
raises issues with data inconsistency which may occur due to various reasons - for instance inherent
imprecision associated with sensors, inconsistent readings and unreliable data transfer, just to name
a few.

This VF provides the functionality to ensure consistency of the sensor data at various system
abstraction levels:

• Data consistency may mean that data retrieved from a location in the sensor network should
be consistent with data sent to the same location.

• Data consistency may also mean that all sensors sensing the same physical phenomenon
should more or less agree on the measured value.

• In a rule-based system, data consistency may mean that all actuators agree on the action that
needs to be taken.

The following parameters are needed to ensure accurate and consistent operation of WSNs and
distributed COs:

• Localisation: to interpret sensor data and collaborate with other nodes;

• Synchronisation: to ensure that all nodes have an equal understanding of time and the mo-
ment at which events take place;

• Reliable data transfer: to guarantee delivery of information and/or customisable degrees of
reliability for data transmission;
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• Routing: to accomplish forwarding data from source(s) to destination(s) through collabora-
tion among neighbours in an energy efficient manner while maintaining a best effort level of
reliability;

• Coverage: to cover a large area while being able to turn off some of the sensors, thus, saving
valuable energy, as well as enhancing the accuracy of the sensed data.

Data consistency at the data processing level can be achieved through the following mechanisms:

• State monitoring: to detect any change in state of the environment, in which sensors are
placed, directly from the sensed data;

• Data fusion: to take the multiple measurements, some of which may be faulty, and determine
either the correct measurement value or a range in which the correct measurement lies;

• Event detection: for the WSN to be in charge of monitoring the environment in which its nodes
are placed, to detect occurrence of certain events;

• Fault tolerance and Consensus: to preserve precision and to agree on measured data and
required actions in the presence of faulty collaborative sensors;

Trends. For state monitoring, describing the creations between states and the events that trigger
state-change through a set of rules and predicates over events and their parameters has proved to be
popular. The authors in [101] proposed this approach for the first time, which was later also utilized
and modified by Strohbach et al. [119]. Research in this direction is on rise. Also hybrid distributed
algorithms similar to the one proposed by Sahni et al. [107], which is executed by every sensor using
the measurement ranges received from the remaining sensors monitoring the same region as data,
accompanied with the sensor’s own measurement have received considerable attention.

Environmental monitoring, detection, identification, localization or tracking of objects in sensor
fields have created a new domain for event detection. Research reported in [100, 123, 42, 31, 128]
are a few example to mention.

Introducing, defining and implementing the concept of collaboration in various levels of abstraction
is the newest trend in the area of data consistency, which seems to have large potential to solve
various issues of the operation of WSN, data processing, and application programming.

Some open issues There are still open issues in the area of data consistency for WSN and coop-
erating objects. Here we elaborate on some of the most important ones.

A reasonable number of location techniques have been proposed in the literature. An integration
framework (e.g. standardised APIs) of such mechanisms would be useful for the applications. This
stems from the fact that the application requirements are dynamic and often change. The ability to
adapt to these frequent changes are thus essential. Since various localization techniques have been
defined, the integration framework may choose a proper localization technique to be utilized based
on the requested accuracy at the time and the environmental status.

Reliable and energy-efficient data transfer which is application dependent for improved perfor-
mance is required. With no doubt collaboration between sensor nodes will increase the reliability
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of the transferred data in the WSN. However, the overhead introduced by cooperation along with
the additional energy consumption should be in a reasonable level. Indeed, in order to avoid being
suboptimal, protocols should be developed according to particular application requirements.

Data fusion issues that require further investigation are the associated overhead of the fusion
process and the heterogeneity of data due to different sensor sources.

Also, high-level descriptive language oriented towards the collective model of solving tasks is
necessary in order to implement distributed collaborative WSN applications. This language should
support data-centric architectures and provide real-time guarantees for energy efficient operations.

5.3 VF: Communication functionality

The communication vertical function refers to the capability of any pair (or group) of devices to
exchange information. Different types of communications can be performed: one-to-all, one-to-many,
many-to-one, many-to-many. If we consider the case of wireless sensor networks with a single sink,
one to all or one to many communications are needed for query dissemination, while many to one
communication is explored to gather sensed data at the sink.

Trends. Communication in COs environment is expected to be data centric and attribute-based.
This means that more than addressing a specific cooperating object, the communication infrastruc-
ture should be able to deliver data to and from groups of COs which share a set of attributes speci-
fying the destination/source address of the information. For example, a user could issue a query on
the average temperature of an area in an office building. This query should then be delivered to the
objects with temperature sensors. Similarly, once measures on the temperature have been taken,
the cooperating objects in the specific area will send packets to the sink(s) reporting the measured
values.

The trend of data-centric and attribute-based data dissemination may lead to the selection of differ-
ent communications overlays depending on the values to be reported. A given overlay interconnects
cooperating objects of the same ’group’ sharing a common set of attributes (attribute-based rout-
ing). Attribute-based routing could leverage the burden of delivering queries to objects which cannot
answer the query. Also attribute-aware communication infrastructures may optimise sensor data fu-
sion by selecting routes which maximise the chances of aggregating a given type of data, overall
decreasing the network load and energy-consumption [113].

Some open issues. Important VF parameters which should be included in a query are the time
constraints and accuracy with which a given query needs to be answered. These are application-
dependent and even query-dependent parameters: (a) for a query to be successfully resolved, the
sensors must deliver fresh data, (b) the query must be answered fast enough , and (c) the precision
with which the query is answered must meet the query requirements. This can be regarded as new
concept of quality of service requirements that remains to be explored.

The second issue to address is the fact that a one-fits-all protocol stack may not be suitable to
this scenario. It is possible to identify the ’vertical functions’ that should be provided and possible
implementations of such functions for specific sets of possible applications. The communications
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protocols will benefit from and sometimes require the information provided by different vertical func-
tions such as time synchronisation and location awareness. Not only time and location information
are included in the delivered data, but some protocols such as geographic-based routing can exploit
location-awareness to reduce routing overhead and the nodes storage demand. The interactions
between complementary vertical functions from the application viewpoint should be further investi-
gated.

Mobility of objects is the third issue to be tackled. Although in many cooperating objects scenarios
the devices themselves are unlikely to be mobile they can be, however, located on mobile users
or mobile stations so that their location changes in time in a predictable or unpredictable way. On
one hand this may have a beneficial effect (e.g. load balancing the energy consumption among the
different nodes) but on the other hand it requires mobility management or mobility-aware protocols
to be added to the protocol stack. The mobility of some of the devices have been explored by some
architectures such as the data mules [112], in which a group of mobile nodes move in the deployment
area collecting data from the sensor nodes and delivering the collected data to the sinks.

5.4 VF: Security, Privacy and Trust

COs and WSNs are usually placed in locations that are accessible to everyone – also to attackers.
For example, sensor networks are expected to consist of a couple of hundred of nodes that may
cover a large area. It is impossible to protect each of them from physical or logical attacks. Thus,
every single node is a possible point of attack.

In a CO, security is pervasive. [87] states that security must be integrated into every component
to achieve a secure system. Components designed without security can become a point of attack as
[54] shows. However, specific vertical functions to enforce security are available for applications.

Since fully tamper resistant devices are hard to build [9] and would cost too much money, protocols
for sensor networks have to be designed in a way that they tolerate malfunctioning/attacking nodes
while the whole sensor network remains functional.

Trends. Karlof and Wagner [54] describe several attacks against known routing protocols for sen-
sor networks and present countermeasures for some attacks. This shows that secure routing proto-
cols are a trend themselves since security was only a minor issue before. New routing protocols were
developed that are resilient to black-hole attacks ([30]) or that use efficient symmetric key primitives
to prevent compromised nodes from tampering with uncompromised routes consisting of uncompro-
mised nodes (Ariadne [50]). It also deals with a large number of DoS attacks, as well as [130] which
maps jammed regions and reroutes around it. [93] proposed SIA, a framework for secure informa-
tion aggregation in large sensor networks which uses random sampling mechanisms and interactive
proofs to verify that the answer of an aggregator is a good approximation of the true value.

Encryption is the basic technique for securing and authenticating transmitted data. Using asym-
metric cryptography on highly resource constrained devices is often not possible due to delay, energy
and memory constraints [20, 18]. With symmetric cryptographical methods, two communicating co-
operating objects need a common key. Secure pebblenets [11] use a shared key for the whole
network but since the compromise of one single node leads to a security failure of the whole network
pairwise approaches have been developed in the last years. SPINS [88] uses a central base station
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to establish new pairwise session keys, [35, 23] is based on random pairwise key pre-distribution.
[125] does not rely on infrastructure or pre-distribution: physical contact between nodes is used for
establishing the initial key, new keys are then established by sending key-shares along node-disjoint
paths via secured point-to-point communication to each other.

Traffic analysis on the ciphertext can reveal sensitive information about the data even if it is en-
crypted. To provide better secrecy, dummy messages can be generated. This seems to be diametri-
cal in resource constraint cooperating objects, but secrecy may be a more important goal than energy
saving in some cases. [126] presents an energy-efficient framework that maintains the anonymity of
a virtual infrastructure including routing by randomising communications.

Using cooperating objects, especially sensor networks, humans can be observed which leads to
privacy problems. Encryption tackles overhearing and data coarsening ensures that no conclusions
can be drawn from the data to a single person. The usage of sensor networks to spy on individ-
uals cannot be met with technology alone, but only with a mix of societal norms, new laws, and
technological responses [87].

With several cooperating objects contributing to a common goal, it is necessary to assess the
reliability of the information provided by an individual cooperating object. With respect to services
and transactions, trust has been researched for several years. For data-centric and fully distributed
architectures research has just started. A distributed voting system is proposed in [23] where votes
can be cast against misbehaving nodes until all other nodes refuse to communicate with this node.
[38] is a more general reputation-based framework with each node monitoring the behaviour of other
nodes and building up their reputation thereupon. Nodes with a bad reputation can be excluded from
the community.

Some open issues. Existing protocols have to be made resilient to attacks, and more new proto-
cols have to be designed as well. Intelligent intrusion detection systems for cooperating objects are
also needed.

Encryption concepts for aggregation are needed since along an aggregation tree, only point-to-
point encryption is feasible, but an attacker in the tree has full access to the data. No general
solutions to this problem exist so far.

Some of the key distribution protocols consume a lot of power, therefore energy-efficient algorithms
without assumptions about the available infrastructures are required.

Energy-efficient solutions are needed for secrecy. Systems are needed where the user can specify
the amount of energy it should spend for dummy messages and the maximum delay it wants to
accept to enable mix cascades in cooperating objects.

Another important question is how the illegitimate use of sensor networks, e.g. to spy on individu-
als, can be prevented.

Concerning trust, energy is the main problem, since the exchange of votes and reputation data
consumes reasonable power.

5.5 VF: Distributed Storage and data Search

In cooperating objects and wireless sensor networks (WSNs) efficient storage and querying of data
are both critical and challenging issues. Especially in WSNs large amounts of sensed data are
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collected by a high number of tiny nodes. Scalability, power and fault tolerance constraints make
distributed storage, search and aggregation of these sensed data essential.

It is possible to perceive a WSN as a distributed database and run queries which can be given in
SQL format. These queries can also imply some rules about how to aggregate the sensed data while
being conveyed from sensor nodes to the query owner. Data aggregation [17], [135] techniques that
reduce the number of data packets conveyed through the network are therefore important and also
required for effective fusion of data collected by a vast number of sensor nodes [6, 43]. A query in
a sensor network may be perceived as the task or interest dissemination process. Sensor nodes
process the task or interest and return data to the interest owner.

The following characteristics of WSNs should be considered while designing a data storage, query-
ing and aggregation scheme for WSNs:

• Sensor nodes are limited in both memory and computational resources. They cannot buffer a
large number of data packets.

• Sensor nodes generally disseminate short data packets to report an ambient condition, e.g.,
temperature, pressure, humidity, proximity report, etc.

• The observation areas of sensor nodes often overlap. Therefore, many sensor nodes may
report correlated data of the same event. However, in many cases the replicated data are
needed because the sensor network concept is based on the cooperative effort of low fidelity
sensor nodes [6]. For example, nodes may report only proximity, then the size and the speed
of the detected object can be derived from the locations of the nodes reporting them, and
timings of the reports. The collaboration among the nodes should not be hampered by the
data aggregation scheme.

• Since there may be thousands of nodes in a sensor field, associating data packets from numer-
ous sensors to the corresponding events, and correlating the data of the same reported event
at different times may be a very complicated task for a single sink node or a central system.

• Due to a large number of nodes and other constraints such as power limitations, sensor nodes
are generally not globally addressed [6]. Therefore, only the use of address-centric protocols
are mostly inefficient. Instead, data-centric or location-aware addressing protocols where in-
termediate nodes can route data according to its content [62] or the location of the nodes [21],
should be used.

• Querying the whole network node by node is impractical. So attribute-based naming and data-
centric routing [114] are essential for WSNs.

Trends. Queries made to search data available in a WSN should be resolved in the most power
efficient way. This can be achieved by reducing either the number of nodes involved in resolving a
query or the number of messages generated to convey the results.

There is a considerable research interest to develop efficient data querying schemes for WSNs.
Data querying systems in general have two major components; interest/data dissemination and
query processing and resolution. Query resolution usually involves data aggregation for energy
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efficient processing. We first examine interest and data dissemination techniques which are closely
related to data querying, and then query processing and resolution techniques.

Interest and Data Dissemination. Protocols for data dissemination protocols are designed to effi-
ciently transmit and receive queries and sensed data in WSNs. In this subsection, we briefly explain
five of the best known protocols.

• Classic Flooding: in classic flooding, a node that has data to disseminate broadcasts the data
to all of its neighbours.

• Gossiping [6]: this technique uses randomisation to conserve energy as an alternative to the
classic flooding approach. Instead of forwarding data to all its neighbours, a gossiping node
only forwards data to one randomly selected neighbour.

• SPIN [43]: this protocol is based on the advertisement of data available in sensor nodes. When
a node has data to send, it broadcasts an advertisement (ADV) packet. The nodes interested
in this data reply back with a request (REQ) packet. Then the node disseminates the data
to the interested nodes by using data (DATA) packets. When a node receives data, it also
broadcasts an ADV, and relay DATA packets to the nodes that send REQ packets. Hence the
data is delivered to every node that may have an interest.

• Directed Diffusion [53]: in SPIN the routing process is stimulated by sensor nodes. Another
approach, namely directed diffusion, is sink oriented. A sink is the name given to the central
node responsible for gathering data from all the other nodes in directed diffusion where the sink
floods a task to stimulate data dissemination throughout the sensor network. While the task is
being flooded, sensor nodes record the nodes which send the task to them as their gradient,
and hence the alternative paths from sensor nodes to the sink are established. When there
is data to send to the sink, this is forwarded to the gradients. One of the paths established is
reinforced by the sink. After that point, the packets are not forwarded to all of the gradients but
to the gradient in the reinforced path.

• LEACH [45] : is a clustering based protocol that employs randomised rotation of local clus-
ter heads to evenly distribute the load among the sensors in the network. In LEACH, the
nodes organise themselves into local clusters, with one node acting as a local cluster head.
LEACH includes randomised rotations of the high-energy cluster-head position such that it ro-
tates among the various sensors in order not to drain the battery of a single sensor. In addition
LEACH performs local data fusion to compress the amount of data being sent from the clusters
to the base station.

Query Processing and Resolution When a query arrives at a sensor node, it is first processed by
the node. If the node can resolve the query, the result of the query is disseminated. This approach is
one of the simplest ways of resolving and processing a query. Sensor nodes usually take advantage
of collaborative processing to resolve queries so that smaller number of messages are transmitted in
the network. Queries can be flooding-based where a query is flooded to every node in the network.
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Alternatively they can be expanded ring search (ERS) based where a node does not relay a query
that it can resolve. Currently available query processing systems are summarised below:

• TinyDB [69]: is a query processing system for extracting information from a network of TinyOS
sensors. TinyDB provides a simple SQL-like interface to specify the data along with addi-
tional parameters such as the rate at which data should be refreshed much as in traditional
databases. Given a query specifying data interests, TinyDB collects data from nodes in the
environment, filters and aggregates them. TinyDB does this via power-efficient in-network pro-
cessing algorithms. Some key features of TinyDB areas follows: TinyDB provides metadata
management, provides a declarative query language, supports multiple query resolution on the
same set of nodes and supports different levels of in-network aggregation. It also includes a
facility for simple triggers, or queries that execute some command when a result is produced.

• COUGAR [132]: is a query layer for sensor networks which accepts queries in a declarative
language that are then optimised to generate efficient query execution plans with in-network
processing which can significantly reduce resource requirements.

• Active Query Forwarding scheme (ACQUIRE) [104]: aims at reducing the number of nodes
involved in queries. In this scheme each node that forwards a query tries to resolve it. If
the node resolves the query, it does not forward it further but sends the result back. Nodes
collaborate with their n hop neighbours, where n is referred to as the look ahead parameter.
If a node cannot resolve a query after collaborating with n hop neighbours, it forwards it to
another neighbour. When n equals to 1, ACQUIRE carries out flooding in the worst case.

Some open issues. The routing protocols for WSNs are generally designed for networks that have
fixed homogeneous sensor nodes and are based on the assumption that all nodes try to convey
data to a central node, often named sink. However, in cooperating objects networks there will be
heterogeneous nodes that can be mobile, and the sensed data will be needed by many nodes,
i.e., multiple sinks. Distributed data storage and search (DSS) solutions should have support for
heterogeneity. Additionally, open research issues on DSS can be summarised as follows: replication,
concurrency and consistency control of distributed data, mobility support, general purpose solutions
for declarative query languages, interoperability with open standards, query driven architectures with
QoS support.

5.6 VF: Resource management

COs may form a self-organising network, in which COs arbitrarily join and leave or even move during
this operation. Since system components are distributed, any action often involves multiple COs
at a time. Due to the distributed, dynamic, and uncertain (since both COs and communication are
associated with uncertainty) nature of system components, the design of such embedded wireless
collaborative system proves to be difficult and requires a scheme to facilitate the system design and
application development.

Resource management aims at providing a way to manage the resources of a system by enabling
high-level system primitives to hide unnecessary low-level details. It enables the application to be
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independent of the actual underlying distributed system. It should also address the dynamic nature of
available resources, such as variable network bandwidth. Because the system is built of error-prone
components, failures should be handled as normal and not as exceptions.

Trends. Over the years various enabling technologies have contributed to the evolution of adap-
tation and reconfigurable software, each having its own advantages and disadvantages. The most
important ones are, middleware, component-based design, computational reflection, and separation
of concerns. Recent efforts have been directed towards replacing the traditional strict modularisation
or layering design with more energy-efficient one, i.e., cross-layered design. However, most of the
important cross-layer adaptation frameworks and projects that have been proposed assume mobile
devices that are richer than wireless sensor nodes in terms of resources. Therefore, adaptation
frameworks designed specifically for WSN are emerging.

Operating systems for wireless sensor networks with data centric architecture and especially de-
signed for limited memory are considered to form one of the main trends in the area of adaptation
in WSN. Due to increasing interest in having adaptive behaviour on a WSN-wide scale, recently
attentions have been paid to extending the concept of data centric architecture to the whole network.

Some open issues. One of the most important open issues regarding resource management is
designing an architecture tailored to support different adaptation models. Since application require-
ments, environmental conditions as well as available resources and services may frequently change,
depending on goals of the application at the time, sensor nodes must be able to adapt accordingly.
However, since these goals may change as well, different adaptation models are required from which
the most proper one can be automatically selected. As an example, the application may at a time
aim at frequent and high accuracy sensor readings and at the other time at less accurate data and
more energy efficient readings.

A direct result of the above-mentioned issue is the need for multi-dimensional optimisation tech-
niques for resource management.

5.7 VF: Time synchronisation

Applications need to establish a common sense of time among the cooperating objects participating
in their sensing and actuation goals. Such a functionality can be offered through a time synchroni-
sation vertical function.

Forest fire monitoring is a scenario that requires not only the information of whether there has
been an indication of fire but also where and when this is happening. The collected sensor data
provides the basis for the decision making process which may trigger actions to be taken in the
monitored environment in order to address abnormal circumstances. Thus, the true time of the
observed events is crucial to the prompt action of fire fighting.

It is sufficient to associate local clock timestamps with the sensor data when decisions can be
made locally. For instance, the decision of regulating the fluid flux of an industrial pipe may be taken
locally and actions would follow through local CO actuators, for example, a regulating valve.

However, there are cases where the collected sensor data will be aggregated from various coop-
erating objects at various points inside the network. To perform such a function, the data need to be
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timestamped at the source. In this case, the data originates from multiple sources which may or may
not agree on a similar time. Thus, a common view on time among the COs is an essential aspect to
correlate multiple sources sensor data in order to produce a consistent and reliable result.

Trends. An important question to ask is whether the Network Time Protocol (NTP) [80] currently
in use on the Internet could be adopted without further modification in low cost wireless sensor
networks. This protocol relies on an external time reference to synchronise the top layer of time
servers called stratum 1 servers.

As the NTP protocol was originally developed considering other design issues, some of the chal-
lenges that arise in CO and WSN scenarios cannot be addressed if the protocol is adopted unmodi-
fied in sensor network applications. One of the issues is energy efficiency as the external source of
time (e.g GPS) tends to consume more power than other components of a sensor node and does
not work in indoor areas which have no line-of-sight to the satellites.

However the issue raised in [102] that the NTP protocol maintains a synchronised system clock by
regularly adding small increments to a system counter is an important one. This behaviour precludes
the sensor node processor of being switched to a power-saving idle mode. In addition, NTP servers
must be prepared to handle synchronisation requests at any point in time. This could potentially
introduce a problem as the communication module of a CO (e.g. radio) shows the highest cost
among the other components when it is transmitting or listening to any signal from the network.
Thus, this module could not be put in sleep mode in order to save energy.

GPS devices of small size and low power consumption have been developed and are now com-
mercially available. The Leadtek 9546 low-power GPS receiver [65] was recently integrated into a
sensor board of the Crossbow Mote [52]. These devices consume a current of 60 mA at 3.3V in full
operation. Despite the fact that such a consumption profile is higher compared to the micro-controller
current draw of 8mA, it is comparable to the energy consumption profile of the radio module.

However, such sensor nodes are optimised to operate in sleep mode most of time. If the GPS
is configured to operate occasionally to acquire the time signal, its energy consumption may not be
an issue. Although adding this particular GPS module to a sensor board increases its cost by 50%
today, we believe that the cost will drop significantly because of economy of scale. In contrast, this
is also the case for the current cost of sensor nodes which are similar to the cost of a sensor board
equipped with GPS.

The current trend is towards the design of self-configuring protocols on the assumption that NTP
cannot be directly used in cooperating objects and WSNs applications. The latest research results
address the time synchronisation problem with approaches that do not rely on GPS time signals. As
researchers realise that low-power and low-cost GPS devices are becoming commercially available,
the research trend may shift to hybrid protocol designs where GPS is used as the primary source of
time. Such information is then disseminate throughout the network to non-GPS nodes. How such
time servers ought to be organised in the network (e.g. hierarchical such as NTP) would be an
important research question.

Some open issues The characteristics of the network topology in ad-hoc wireless sensor networks
may introduce severe delays because of disconnected parts of the network. To compensate for
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such uncertainties, the time synchronisation protocol needs to be tolerant to the message delay
irrespective of its dominant source (e.g. processing, transmission).

The second issue is related to trust. When some sensor nodes become responsible to provide the
time reference to other nodes in the network, the issue of trusting the source of time arises. Also, if
GPS time signal is used in some reference nodes a related question is how we can guarantee the
authenticity of the GPS time.

Finally, Romer et al [102] suggest that calibration of sensors is a much more general and complex
problem than time synchronisation. The interesting question is whether the current proposed time
synchronisation techniques can be used for general sensor calibration problems. Also, it may be
the case that time synchronisation (at least for outdoor sensor deployment) can be achieved by
instrumenting low-cost, low-power GPS devices to sensor nodes as previously discussed.
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