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1 Executive Summary

This study provides a survey about the current state of the art of programming models and system
architecture for Cooperating Objects and motivates their importance for a successful development of
these technologies. Section 2 provides a brief introduction to the topics and motivates the need of
designing suitable programming abstractions for Cooperating Objects. In Section 3, the most relevant
existing programming abstractions are surveyed and classified. The main reason for the development
of these abstractions is to allow a programmer to design applications in terms of global goals and to
specify interactions between high level entities (such as agents or roles), instead of explicit managing the
cooperation between individual sensors, devices or services. For example, the database abstraction allows
to consider a whole sensors network as a logical database, and performing network-wide queries over the
set of sensors. The various paradigm are surveyed and a set of criterions allowing to easily review their
strengths and weaknesses are presented.
Section 4 presents the existing system architectures for Cooperating Objects at two different levels: first,
system architectures of individual nodes, which includes the structure of the operating system running at
node level and its facilities; second, system architectures supporting the cooperation of different nodes,
such as communication models.
Finally, in section 5, the document points out some of the limitations of current approaches, and proposes
some research perspectives. In particular, programming paradigms should provide more support to ease
of programming, heterogeneity, as well as scalability issues. Regarding system architectures, real-time as-
pects, which are not currently well addressed, will become increasingly important for Cooperating Objects.
Dynamic maintenance (such as code deployment and runtime update support) is another important issue
to address in future systems. At last, an effort is required to better integrate the various paradigms and
systems into a unified framework.
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2 Introduction

Key to the successful and widespread deployment of cooperating objects and sensor network technolo-
gies is the provision of appropriate programming abstractions and the establishment of efficient system
architectures able to deal with the complexity of such systems. Programming abstractions shield the
programmer from the “nasty system details” and allow the developer to think in terms of the concrete
application problem rather than in terms of the system. This is also true for traditional distributed systems,
where numerous software frameworks and middleware architectures are crucial to perform an integrated
computing task. Such frameworks and middleware are based on programming models such as distributed
objects or events. These conventional and successful programming abstractions for distributed systems
can, however, not be simply applied to Cooperating Objects and sensor networks, due to some substantial
differences existing among the latter and the former systems.
We will refer to a programming model as “a set of abstractions and paradigms designed to support the
use of computing, communication and sensing resources in an application” and to a system architecture
as “the structure and organization of a computing system, as a set of functional modules and their inter-
actions”.

The notion of Cooperating Objects refers to devices ranging from sensors and smart tags to personal
computing devices such as cell phones, PDAs, or even digital cameras. Within the Embedded WiSeNts
project a Cooperating Object is formally defined as “a collection of:

• sensors,

• controllers (information processors),

• actuators or

• Cooperating Objects

that communicate with each other and are able to achieve, more or less autonomically, a common goal”.
For the purpose to achieve a given global goal, cooperating objects can organize themselves in a particular
set up and, like in traditional distributed systems, coordinate and cooperate in order to perform a form
of distributed computing. However, traditional distributed computing applications show many important
differences from those considered in the context of cooperating objects and sensor networks: Cooperating
Objects are in fact closely related to real world objects and/or to the physical space, which neither are
considered in traditional distributed computing. This close integration with the real world raises several
issues for the design of feasible architectures and programming abstractions for Cooperating Objects. Since
real world objects/entities may be mobile, resource availability and context of operation change often. The
system must be able to accommodate dynamic (re-)configuration, as well as being able to expose to the
programmer context changes. The latter point is an aspect which differentiates Cooperating Objects from
mobile computing: mobile computing approaches often try to provide the impression of a standard (static)
computing environment, in order to shield the programmer from mobility constraints. In addition, typical
application domains of Cooperating Objects are different from those of distributed and mobile computing:
in ubiquitous and pervasive computing, applications often have to deal with the notion of context, which
is directly related to data about the physical environment and does not appear as an issue in distributed
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computing. Another aspect that differentiate Cooperating Objects and in particular sensor networks to
traditional distributed system, is that a service or function may often be provided anonymously by one (or
several) sensor(s): the identity of the device providing the function is thus often unimportant.
Because of these differences, the design and development of dedicated system architectures and pro-
gramming models appears as a key issue to enable the success of Cooperating Objects as a mainstream
technology. Therefore, we will in the next sections provide an analysis of the requirements with which
feasible system architectures and programming models must be able to comply, we will survey the most
significative existing approaches and evaluate them, underlining the issues that in our opinion still require
attention from the research community.

3 Programming Models

In order to design feasible abstractions and paradigms, a first issue to address is which objects will be
used in the computing environment. While entities like a simple sensor or a complex cellular phone share
the common properties of a Cooperating Object, it is unclear whether common programming models
would apply to such different entities. In the following section we will provide a brief overview of the
most significative common attributes of Cooperating Objects and underline the requirements that these
attributes pose on programming models. In Section 3.1 we will then survey the state of the art, providing
examples and references for further readings. Finally, in Section 3.3, a summary of the existing approaches
will be provided and the issues requiring further research will be pointed out.

3.1 Requirements

Cooperating Objects and sensor network applications pose specific requirements on the design of program-
ming abstractions and paradigms. Fundamental work has been done already to identify general significative
characteristics of Cooperating Objects and to derive from them some common requirements with which
suitable programming models have to comply [ECPS02], [ASSC02].
Considering the existing work and our experience in this domain, we conclude that an adequate program-
ming abstraction for Cooperating Objects must essentially take into consideration the following aspects:

1. Ease of Programming and Expressiveness. Future applications scenarios for sensor networks and
Cooperating Objects typically envisage developers that are not necessarily expert programmers, as
for example biologists, supply-chain managers or hospital operators. Moreover, since networks of
Cooperating Objects are envisioned to include hundreds or thousands of single devices, an applica-
tion developer should not be bound to program Cooperating Objects individually. On the contrary,
should be provided with the ability to specify a global task for the network, letting to the underlying
system layers the task of translating this global goal in concrete actions the single devices have to
carry out.
On the other hand it is also extremely important to keep as high as possible the level of expressive-
ness of the system “programming language”, by providing the programmer with a set of operators
and instructions which must be large and diverse enough to enable him/her to exploit the whole
capabilities and functionalities the network is endowed with.
On the application level this requires the programmer being somehow aware of the global features
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the system can offer and being provided with adequate programming primitives to access these
features without necessarily knowing neither the characteristics of the system nor the way a specific
task is achieved by assigning concrete roles to the single devices. In an environmental monitoring
application, for example, a programmer may probably prefer to issue a query like “Detect all bats in
the cave” rather than “Detect and discriminate all ultrasonic-pulses coming from the area delimited
by the given reference points”. In this case, the phenomena the programmer is interested in should
be reinterpreted in measurable quantities and detected by multiple cooperating entities. in this case,
the programmer will not need to be aware of this “translation” process, because of the higher level
primitives he/she is provided with.
With regard to usability and expressiveness aspects, we can conclude that a good programming
abstractions for Cooperating Objects must:

• Provide “easy-to-use” and expressive programming primitives

• Allow the developer to program the system as a whole (global task specification)

2. System Diversity. We defined a Cooperating Object as “a collection of sensors, controllers (infor-
mation processors), actuators or Cooperating Objects that communicate with each other and are
able to achieve, more or less autonomically, a common goal”. Thus, a Cooperating Object may be
as simple as a single sensor endowed with some computing and communication capabilities or as
complex as a sophisticated mobile unit equipped with a wide set of sensors and actuators, a powerful
processor and some kind of long lasting power supply. An application developer is, however, not
interested in knowing the concrete ability of each single device the system consists of, but only on
the results she could gain from using the system as a whole. In this sense the heterogeneity of
the system should be as much as possible hidden from the programmer, allowing her to define a
global network task and eventually letting the underlying system layers or even the single devices to
cope with the translation of this global tasks into single device tasks. It is worth to note that the
aspects single system devices may differ, include, among others: number and the type of sensors,
computing power, communication range, communication technology, type and durability of power
supply, packaging and physical dimensions.
An adequate programming abstraction must thus be able to cope with heterogenous devices and
should, in particular:

• Furnish a set of programming primitives for task assignment independently of single devices
capabilities

3. System Dynamic. When deploying a system composed of wireless devices potentially unevenly
distributed over a wide geographical area, keeping track of the exact state of the system in terms of
topology, lifetime, availability and connectivity, appears as a challenging task. In fact, not only the
initial state of the system may be partially unknown, but due to the extreme dynamics the system
may experience, its state may strongly vary in both space and time domains. Due to node mobility
or environmental factors, for example, the topology of the network may change over time in an
undetermistic manner, thus bringing uncertainty on network coverage and connectivity. In a sensor
network single nodes may run out of power, be temporarily or permanently unavailable for unforeseen
reasons (environmental factors, conscious or unconscious human interaction) or additional nodes may
be redeployed to replace crashed ones. Since an application programmer would and should not track
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or control the ever changing state of the system, it is a role of the run-time system to adequately
adapt the assignment of network resources.
The abstraction designer is therefore compelled to consider that the system must:

• Be able to deal with unknown/unstable topology

• Be able to deal with unknown/unstable network size

• Be robust against temporarily or permanently device crashes

• Cope with unstable connectivity

At this point, we would like to point that system dynamic may also vary depending on the concrete
application and/or deployment 1. In application scenarios that include mobile Cooperating Objects,
for example, the uncertainty about the topology of the system is typically much more significant
than in some typical building monitoring scenarios, where the sensing devices may be fixed on walls
or furniture.

4. Environmental Dynamic. Being embedded into the real world, sensing devices may experience
extreme dynamics with respect to the phenomena being observed, both due to the unpredictable
nature of the phenomena and due to their wide varying intensity and space-time extension. Even
a single sensed quantity, for example, may span in a very wide interval and exhibit an extremely
irregular behavior or, on the contrary, show no relevant changes for long periods of time and/or on
wide geographical areas. The detection of real-world phenomena may also be a complex process,
which may require the use of many different sensors and an aggregation of the measured values.
An application programmer is, however, presumably not interested in knowing how the occurrence
of the phenomena can be detected, but just need to be able to correctly specify which phenomena
she is interested in and eventually which actions to perform in consequence of their detection. The
occurrence of a specific phenomenon represent thus for the application an event, to which the system
should be able to react by either just reporting the measured variables or performing a more complex
action. An abstraction designer must thus:

• Provide programming primitives to address a wide variety of real-world events

• Provide programming primitives to react to real-world events

5. Resource Constraints. We already pointed out that distinct Cooperating Objects may show a
considerable diversity in terms of kind and number of usable sensors, available power supply and
computing and communication capabilities. Therefore, the measure of which resource constraints
influence the design of programming paradigms and abstractions for Cooperating Objects depends on
the specific Objects being considered. When designing algorithms for sensor systems where nodes are
typically powered with small batteries, have poor computing and storing capabilities, strict bounded
communication range and a limited set of sensing and/or actuating devices, saving resources becomes
a key factor for a feasible and successful design. As we already pointed out when discussing System
Diversity, a suitable programming abstraction should be able to hide device heterogeneity to the
programmer, and should thus also be able to:

1See also study 3.1.1, “Applications and Application Scenarios”
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• Cope with power constraints

• Cope with computing constraints

• Cope with hardware constraints

6. Scalability. Since networks of Cooperating Objects may include hundreds or thousands of single
devices, a suitable programming abstraction must be able to cope with network sizes that range
from some units to thousands of devices.
Depending on the application context and the geographical area that the network is deployed on,
the density of devices may also vary. Scalability must thus be ensured also for varying (and possibly
unknown) network density. For programming a network of Cooperating Objects, the developer must
thus be provided with a programming model that is able to:

• Ensure scalability to varying network size

• Ensure scalability to varying network density

7. Deployment and Maintenance. Physical deployment and maintenance of networks of Cooperating
Objects may have different challenges that depend on the concrete application scenario. However,
since devices may be in most cases be physically inaccessible, hardware repairs and the number of
software updates must be kept as low as possible, both because of the resulting transmission (thus,
energy) costs and due to the problems related to ensuring update coherence throughout the network.
An application developer will also need to be provided with suitable debugging tools, whose design
and realization are issues of growing interest in the research community. Due to the manifold of
devices a network of Cooperating Objects may be composed of and due to the extreme dynamics the
system may experience, fault isolation appears as an extremely complex task and therefore reliable
and resource efficient tools must be provided as a fundamental system feature.
In order to guarantee efficient maintenance, a suitable programming model for cooperating objects
must thus:

• Limit the number of code updates

• Support a resource-efficient application-level debugging

The complexity and diversity of Cooperating Objects pose strong constraints on the design and develop-
ment of a suitable programming abstraction. Most of the approaches being investigated by the research
community focus on specific application scenarios and are thus typically able to comply with only a subset
of the above listed requirements. In order to give the reader an overview on the state of the art, we supply
in Section 3.2 a brief survey on the ongoing work on programming models for Cooperating Objects.

3.2 State of the Art

In the last couple of years, a growing interest in the research area of Cooperating Objects brought to a
number of designs for programming abstractions specifically targeted to these systems. We analyzed the
research literature and ongoing work and came up to the conclusion that the nowadays most relevant ex-
isting programming abstractions for Cooperating Objects sensor networks can be classified in the following
categories:
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1. Database View

2. Event Detection

3. Virtual Markets

4. Virtual Machines

5. Mobile Code and Mobile Agents

6. Role-Based Abstraction

7. Group-Based Approach

8. Spatial Programming

9. Shared Information Space

10. Other Approaches (Service Discovery, Client-Server Approach, Distributed Objects)

In the following sections, we will analyse the main characteristics of the above listed general approaches and
we will give a brief description of one or two representative sample-implementations for each given category.

3.2.1 Database View

A database may be commonly defined as a collection of data elements (facts) stored in a centralized or
distributed memory in a systematic way, such that a computer program can automatically retrieve them
to answer user-defined questions (queries). A system composed by a manifold of entities like simple sensor
nodes, complex devices or just common everyday objects, each one of them endowed with sensing capa-
bilities, may be regarded as a distributed database. In this system, stored data consist in sensor readings
and where users can issue SQL-like queries to have the system performing a certain sensing task or deliv-
ering required data. In this perspective the system appears just as a collection of sensors, whose readings
need to be adequately and automatically stored. Thus, a database approach abstracts away much of the
complexity of a system collecting a manifold of different devices, allowing users to see the system like a
common database and querying it in a simple, user-friendly query language.
Unfortunately, traditional data-retrieving and processing techniques from the database community cannot
be applied directly to Cooperating Objects, since the traditional assumptions about reliability, availability
and requirements of data sources cannot be extended to simple sensors. In fact, when comparing sensor-
based data sources and traditional database sources some relevant differences can be identified. First of
all, sensor nodes in a Sensor Network have (typically) limited processors and battery resources, they do
not deliver data at reliable rates and the data may often be corrupted. Secondly, since sensors typically
produce data continuously or at pre-defined time intervals, near real-time processing may be required, both
because storing raw sensor streams may be extremely expensive and because sensor data may represent
real-world events the user would like to be aware of and eventually respond to. Thirdly, sensor nodes are
typically connected in an ad-hoc manner and must share common protocols and algorithms to collect,
transmit and process data. The use of a multi-hop transmission strategy may, for example, allow the
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in-network processing and data aggregation strategies as query-answers flow through the network to reach
a central sink [Mad02].
Thus the traditional database approach needs to be readjusted to cope with the new requirements of Co-
operating Objects. The benefits of this kind approach overwhelm however the drawback of a new design
and brought several researchers to the development of query-like interfaces to sensor networks like Cougar
([BGS00], [YG02]), IrisNet ([iri], [NKG+02]) and TinyDB ([MFHH02], [MFHH03], [Mad02]). Section
4.1.4 provides some implementation details about the Cougar approach, while the

TinyDB. As a representative example of a query-like interface to sensor networks we examine TinyDB,
which is a query processing system for extracting information from a network of tiny wireless sensors
developed at the Intel Research Laboratory Berkeley in conjunction with the UC Berkeley. ”Given a
query specifying your data interests, TinyDB collects that data from motes in the environment, filters
it, aggregates it together, and routes it out to a PC. TinyDB does this via power-efficient in-network
processing algorithms” [tin].
The TinyDB query processor runs on top of the TinyOS [HSW+00] operating system (see for details
Section 4.1.2) and each sensor node within the network needs to be endowed with an instance of the
processor before deployment. TinyDB supports a single virtual database table sensors, where each column
corresponds to a specific type of sensor (e.g., temperature, light) or other source of input data (e.g., sensor
node identifier, remaining battery power). Reading out the sensors at a node can be regarded as appending
a new row to sensors table. The query language is a subset of SQL with some extensions. In order to
understand the way TinyDB works, consider the following query example. Several rooms are equipped
with multiple sensor nodes each. Each node is equipped with sensors to measure the acoustic volume.
The table sensors contains three columns room (i.e., the room number the sensor is in), floor (i.e., the
floor on which the room is located), and volume. We can determine rooms on the 6th floor where the
average volume exceeds the threshold 10 with the following query:

SELECT AVG(volume), room FROM sensors
WHERE floor = 6
GROUP BY room
HAVING AVG(volume) > 10
EPOCH DURATION 30s

The query first selects rows from sensors at the 6th floor (WHERE floor = 6). The selected rows are
grouped by the room number (GROUP BY room). Then, the average volume of each of the resulting groups
is calculated (AVG(volume)). Only groups with an average volume above 10 (HAVING AVG(volume)
> 10) are kept. For each of the remaining groups, a pair of average volume and the respective room
number (SELECTAVG(volume), room) is returned. The query is re-executed every 30 seconds (EPOCH
DURATION 30s), resulting in a stream of query results. TinyDB uses a decentralized approach, where
each sensor node has its own query processor that preprocesses and aggregates sensor data on its way
from the sensor node to the user. Executing a query involves the following steps: Firstly, a spanning tree
of the network rooted at the user device is constructed and maintained as the network topology changes,
using a controlled flooding approach. Secondly, a query is broadcasted to all the nodes in the network
by sending it along the tree from the root towards the leafs. Thirdly, nodes fulfilling the query criteria
select the requested data and send them back to the sink. Data can eventually be aggregated as they flow
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through the network 2. More details about the TinyDB query-processor are provided in Section 4.1.4 and
are available, amongst others, in [MFHH02], [MFHH03], [Mad02], [tin].

In the context of Cooperating Objects, the database view is also used in the PerSEND system to support
proximate collaborations between PDAs. In this model, a federated view of a database is maintained from
the data available on each node. The database model is relational, and the system proposes an SQL-like
interface to the applications. The database view is dynamic in the sense that it directly reflects a physical
context. This context is represented by the set of near-by objects. As objects moves, the context evolves
and the data associated to the objects are added or deleted from the database view. This system relies
on a decentralized architecture, using only peer to peer communications (one-hop) over short distance
wireless interfaces.
An important aspect of this database approach is that the system supports the notion of continuous
queries. This means that the dynamics of query results can be managed at the system level, instead of
the application one. For example, consider a continuous query for the evaluation of the maximum offer in
a bidding: the query result continuously reflect the best bid, the data dependency between the best bid
and current offers is managed at the system level.

3.2.2 Event Detection

Events are a natural way to both represent and trigger state changes in the real world and in distributed
systems, giving rise to model applications as producers, consumers, filters, and aggregators of events. Re-
gardless of the specific scenario, “interesting events ” may represent node-internal occurrences (timeouts,
message sending or receiving) or specific sensing results. Thus, the application can specify interest in
certain state changes of the real world (basic events) and upon detecting such an event, a sensing-device
sends a so-called event notification towards interested applications. The application can also specify cer-
tain patterns of events (compound events), such that the application is only notified if occurred events
match this pattern [R0̈4], [LMRV00].
The Event Detection paradigm is particularly well suited to provide a programming abstraction for sensor
network applications. We discuss DSWare [LSA03] as a representative example of this category.

DSWare. DSWare is a software framework that supports the specification and automated detection of
compound events. A compound event specification contains, among others, an event identifier, a detection
range specifying the geographical area of interest, a detection duration specifying the time frame of interest,
a set of sensor nodes interested in this compound event, a time window W , a confidence function f , a
minimum confidence cmin, and a set of basic events E. The confidence function f maps E to a scalar
value. The compound event is detected and delivered to the interested sensor nodes, if f(E) ≥ cmin and
all basic events occurred within time window W . Consider the example of detecting an explosion event,
which requires the occurrence of a light event (i.e., a light flash), a temperature event (i.e., high ambient
temperature), and a sound event (i.e., a bang sound) within a subsecond time window W . The confidence
function may be defined as:

f = 0.6 * B(temp) + 0.3 * B(light) + 0.3 * B(sound)

2The TinyDB engine may be provided with TAG [MFHH02], an aggregation service for in-network processing of data.
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The function B maps an event ID to 1 if the respective event has been detected within the time window
W , and to 0 otherwise. With cmin = 0.9, the above confidence function would trigger the explosion
event if the temperature event is detected along with one or both of the light and sound events. This
confidence function expresses the fact that detection of the temperature event gives us higher confidence
in an actual explosion happening than the detection of the light and sound events. DSWare includes also
various real-time features, such as deadlines for reporting events, and event validity intervals.
For completion, some architectural issues about the DSWare abstraction are discussed in Section 4.1.4.
The event detection paradigm is also used for higher level programming model for Cooperating Objects,
such as in LINDA-like tuple spaces systems and databases. In tuples spaces, a node interested in an event
create a tuple pattern and read the tuple space for this pattern (which is equivalent to subscribing to an
event class, corresponding to the pattern). An actuator node produces an event by publishing a tuple.
When one or more tuples are matching a given tuple pattern, the corresponding thread is waked up read
operation returns) and can process the event.

actuator thread:
out<’event’>

listener thread:
rd<’event’> // handling the event

We must note that in this approach event handling is synchronous, while asynchronous event handling
may be expressed either through multiple threads (one per event), or through a “catch all” pattern, and
then determining the type of event which occurred.
Database approaches which offer triggers also support a form of event handling: the trigger is defined
by a logical predicate on a query, with the associated code to process when its predicate becomes true.
This mechanism is proposed in system as old as Xerox Parctab, to trigger pre-programmed operations in
a database of location-dependant data.

3.2.3 Virtual Markets

The market-based approach offers a very expressive and intuitive way to model and analyse typical dis-
tributed control problems as well as guidelines for the design and implementation of distributed systems.
This methodology has also been proposed as a generic programming paradigm for distributed systems
and addressed as Market-Oriented Programming [Wel96]. This approach regards modules in a distributed
system as autonomous agents holding particular knowledge, preferences and abilities and the distributed
computation may be implemented as a market price system [MW96]. This abstraction is particularly suited
to model systems where different devices need to cooperate and coordinate in order to reach a common
goal in a globally efficient way. Under this point of view, the system is seen as a virtual market where
agents (i.e., single devices) act as self-interested entities, which regulate their behavior to achieve maximal
profit with minimal costs (resource usage) considering globally-known price information (set in order to
achieve a globally efficient behavior).
Mainland et al. [MKL+04] applied the basic ideas of Market-Oriented Programming and defined the
Market-Based Macroprogramming (MBM) paradigm, a promising programming abstraction for sensor
networks.
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Market-Based Macroprogramming. In the MBM approach, sensor nodes are seen as agents that per-
form actions to produce goods in return for (virtual) payments. Goods prices are globally-advertised
throughout the network and single nodes decide to perform only those action that maximize their (local)
utility function, whose value depends on both the node’s internal state and the payment the node will
(virtually) get to perform those actions. By dynamically tuning goods’ prices, a user can force nodes to
perform desired actions and network re-tasking is accomplished by adjusting prices rather than injecting
new code on sensor nodes. MBM also allows multiple users to share the network by offering different
payments for node actions, providing this way a sort of “free market”. In order to preserve network re-
sources, the energy budget of a node has to be taken in account when computing the utility function value.

In the context of the cooperation of personal communication devices, some studies are investigating the use
of economic-like regulation systems to enforce a global objective. In the IST Secure project, which aims at
trust management in uncertain environments (such as the cooperation between newly discovered PDAs),
a general trust model based on the notion of reputation is proposed. Each possible action involved in the
cooperation is associated with a set of possibleoutcomes. Each node maintains an evidences store to log
the interactions with other nodes and interesting events. Based on the history of interactions and observed
outcomes, nodes are able to dynamically build a notion of reputation. Essentially, positive outcomes lead
to “good” reputation. If an action is required in an interaction, a benefit/risk analysis is performed, and
a decision is taken based on the active policy for the node. For example, if the risk is beyond a given
threshold, or if the benefit is below a given value, the action may be rejected.
Similar mechanisms are investigated in a French study called Mosaic, which aims at providing system
support for collaborative backup of vulnerable personal devices (PDA, phones, digital camera...). Each
device uses other devices to save part of their data, and provide spare space to backup other devices. Fair
use of the resources (space and energy) is considered as critical for the success of this kind of applications,
and market-like regulation is a promising approach to ensure this goal. The idea is to associate a currency
to the resources, and accounting for their use when a device provides backup to another. Backing up data
“gives” credits to a device while saving data to another device “uses” credits.

3.2.4 Virtual Machines

The concept of virtual machines is well-known since the early sixties and used to indicate a piece of com-
puter software able to shield applications from the details of an underlying hardware or software platform.
A virtual machine offers to applications a suite of virtual instructions and attends to map them to the
real instruction set actually provided by the underlying real machine. In this way, the virtual machine
abstraction can mask differences in the hardware and software laying below the virtual machine itself, thus
facilitating code and data mobility.
In a system of complex Cooperating Objects, the interchange of data and other information may be very
cumbersome since single devices may show a broad range of different internal architectures and protocols:
this problem may be elegantly overcome by providing each different device with an adequate version of
the virtual machine, which will hide the single device peculiarities and provide a “unique” virtual hardware
and software setting to applications. In this way, applications can easily be written to run on the virtual
machine itself instead of having to create separate application versions for each different platform. The
virtual machine approach has already been deeply investigated for different applications, [Dic73], [BDR97],
[CSS+91], [LY99], but only a few approaches have been proposed and designed explicitly for Cooperating
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Objects. A tiny virtual machine specifically designed for sensor networks is Maté, developed at the Intel
Research Laboratory Berkeley in conjunction with UC Berkeley. We now provide a brief description of the
Maté and MagnetOS [BBD+02] virtual machines, while for further implementation details the reader may
refer to Section 4.1.3

Maté. Maté is a byte-code interpreter that allows to concisely describe a wide range of sensor network
applications through a small set of common high-level primitives. The design of the Maté virtual machine
focused on producing a very concise instruction set, in order to allow complex programs to be very short
and thus feasible to be flooded into the network with limited energy-costs. Maté-Code is sent through
the network in small capsules of 24 instructions, each of which is a single byte long (thus, a single capsule
fits in a TinyOS packet). Maté’s high-level abstraction provides an efficient way to frequently reprogram
a sensor network reducing code transmission costs and thus saving precious energy resources.

MagnetOS. Energy-saving issues have also been the guidelines that led to the design of MagnetOS
[BBD+02], a power-aware adaptive operating system, specifically developed to work both on single nodes
as well as across a large ad-hoc network. MagnetOS provides a unified system abstraction to applications,
that see the entire network as a single unified Java virtual machine. The MagnetOS system is able to
adapt to changes in resource availability, network topology and applications behavior, it supports efficient
power consumption policies and hides network’s heterogeneity to the applications.

The use of virtual machine architectures is also widespread for larger Cooperating Objects like PDAs and
mobile phones. The most common and well-known one is Java. Some specific motivations exist in this
context: in devices like mobile phones, the core services (like voice communication) are provided by the
native environment, while additional applications/services (like games etc.) are confined in the virtual
machine. This prevent additional services to compromise the operation of the core system, which is con-
sidered as dependable, without preventing extensibility. In addition, the isolation provided by the VM avoid
untrusted code to access sensitive data, such as contact information.
Despite the many attractive features of the Java virtual machine, we must highlight some practical limita-
tions which exist for Cooperating Objects: the heterogeneity abstraction is somewhat limited, as platform
fragmentation is important (PJava, MIDP profiles, various API scattered in various optional JSRs...). Also,
the native environment may still be impacted by malicious or buggy code running in the VM, as it usually
shares some resources with the VM: the CPU, memory, energy. While CPU and memory usage can easily
be controlled, energy is more difficult.

3.2.5 Mobile Code and Mobile Agents

Mobile Code is a general notion that indicates a software programm transmitted from one entity to another
through a network to be executed at the destination. Remote Evaluation, Code-on-demand and Mobile
Agents are the three basic paradigms that are encompassed in the notion of Mobile Code. Mobile Agents,
in particular, represent mobile code that autonomously migrates between entities and they are therefore
well suited for the implementation of distributed applications.
The notion of Mobile Agents may be easily seen as an efficient programming strategy for sensor networks,
since sensing tasks may be specified as mobile code that may spread across the network piggybacking
collected sensor data. These scripts may be injected into the network at any point and are able to travel
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autonomously through the network and distribute themselves where and when necessary.
A possible approach to the definition, implementation and deployment of such scripts is provided by Boulis
et al. in [BHS03], where the design and implementation of SensorWare, an active sensor framework for
sensor networks, is presented.

SensorWare. In SensorWare, programs are specified in Tcl [Ous94], a dynamically typed, procedural
programming language. The functionality specific to SensorWare is implemented as a set of additional
procedures in the Tcl interpreter. The most notable extensions are the query, send, wait, and replicate
commands. query takes a sensor name and a command as parameters. One common command is value
which is used to obtain a sensor reading. Send takes a node address and a message as parameters and
sends the message to the specified sensor node. Node addresses currently consist of a unique node ID, a
script name, and additional identifiers to distinguish copies of the same script. The replicate command
takes one or more sensor node addresses as parameters and spawns copies of the executing script on the
specified remote sensor nodes. Node addresses are either unique node identifiers or broadcast (i.e., all
nodes in transmission range). The replicate command first checks whether a remote sensor node is
already executing the specified script. In this case, there are options to instruct the runtime system to
do nothing, to let the existing remote script handle this additional user, or to create another copy of the
script. In SensorWare, the occurrence of an asynchronous activity (e.g., reception of a message, expiry
of a timer) is represented by a corresponding event. The wait command expects a set of such event
names as parameters and suspends the execution of the script until one of the specified events occurs.
The following script is a simplified version of the TinyDB query and calculates the maximum volume over
all rooms (i.e., over all sensor nodes in the network):

set children [replicate]
set num_children [length children]
set num_replies 0
set maxvolume [query volume value]
while {1} {

wait anyRadioPck
if {maxvolume < msg_body} {

set maxvolume msg_body }
incr num_replies
if {num_replies = num_children} {

send parent maxvolume
exit }

}

The script first replicates itself to all nodes in communication range. No copies are created on nodes al-
ready running the script. The replicate command returns a list of newly infected sensor nodes (children).
Then, the number of new children (num children) is calculated, the reply counter (num replies) is
initialized to zero, and the volume at this node is measured (maxvolume). In the loop, the wait blocks
until a radio message is received. The message body is stored in the variable msg body. Then, maxvolume
is updated according to the received value and the reply counter is incremented by one. If we received
a reply from every child, then maxvolume is sent to the parent script and the script exits. Due to the
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recursive replication of the script to all nodes in the network, the user will eventually end up with a message
containing the maximum volume among all nodes of the network. Further details about the SensorWare
approach are reported in Section 4.1.3.

In the broader context of cooperating personal devices, few systems use the Mobile Agent paradigm, as
for example the Sony Shop Navi project [NR96]. Beyond security issues, a major problem is the need of a
common agent hosting environment which is a difficult constraint given the heterogeneity of the devices.
An important advantage of mobile code is the support for dynamic deployment of software (over the air
provisioning), which allows dynamic adaptation of the same devices in new situations requiring additional
software support.

3.2.6 Role-based Abstractions

Many sensor network applications require some form of self-configuration, where sensor nodes take on spe-
cific functions or roles in the network without manual intervention. These roles may be based on varying
sensor node properties (e.g., available sensors, location, network neighbors) and may be used to support
applications requiring heterogeneous node functionality (e.g., clustering, data aggregation).
The concept of role assignment is thus an implicit part of many networking protocols as well as a common
function of middleware platforms for sensor networks. Heinzelman et al. proposed in [HMCP04], MiLAN,
a middleware able to control the allocation of functions to sensor nodes in order to meet certain quality-
of-service requirements specified by the user. In [UWMG05], another high-level role-based programming
approach for sensor networks is presented. In this work, a high-level task specification is compiled into a
set of node-level programs that must be properly allocated to sensor nodes taking into account the node
capabilities. These approaches typically support only very specific role assignment tasks and do not offer
a general solution for the role specification problem. Providing such a general solution is the primary ef-
fort of Frank et al. [FR05], [RFMB04], whose framework for generic role assignment is hier briefly sketched.

Generic Role Assignment. In this approach, a developer can specify user-defined roles and rules for their
assignment using a high-level configuration language. Such a role specification is a list of role-rule pairs. A
role is simply an identifier. For each possible role, an associated rule specifies the conditions for assigning
this role. Rules are Boolean expressions that may contain predicates over the local properties of a sensor
node and predicates over the properties of well-defined sets of nodes in the neighborhood of a sensor node.
Properties of individual sensor nodes are available sensors (e.g., temperature) and their characteristics (e.g.,
resolution); other hardware features (e.g., memory size, processing power, communication bandwidth);
remaining battery power; or physical location and orientation. A distributed role assignment algorithm
assigns roles to sensor nodes, taking into account role specifications and sensor node properties. A separate
instance of the role assignment algorithm is executing on each sensor node. Triggered by property and role
changes on nodes in the neighborhood, the algorithm evaluates the rules contained in the role specification.
If a rule evaluates to true, the associated role is assigned.
Consider the following coverage example. A certain area is said to be covered if every physical spot falls
within the observation range of at least one sensor node. In dense networks, each physical spot may be
covered by many equivalent nodes. The lifetime of the sensor network can be extended by turning off
these redundant nodes and by switching them on again when previously active nodes run out of battery
power. Essentially, this requires proper assignment of the roles ON and OFF to sensor nodes. The following
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role specification implements this.

ON :: {
temp-sensor == true &&
battery >= [threshold] &&
count(2) {

role == ON &&
dist(super.pos, pos) <= [sensing-range]

} <= 1 }
OFF :: else

The rule in lines 1-7 specifies the conditions for a node to have ON status: it must have a temperature
sensor and enough battery power (lines 2 and 3). As a third condition, we require that at most one other
ON node should exist within this node’s sensing range. This is specified by the count operator in line 4.
It expects a hop-range as its first parameter and returns the number of nodes within this range for which
the expression in curly braces evaluates to true. Here we request to evaluate nodes within 2 network hops.
Note that the used property names (e.g., role in line 5, pos in line 6) in the nested expression refer to
properties of the specified neighbor nodes. To access properties of the current node instead, the prefix
super is used (e.g., super.pos in line 6). The dist operator used in line 6 returns the metric distance
between two positions. In the example, it specifies that only nodes located within this node’s sensing range
should be counted.

3.2.7 Group-based Approach

The clustering paradigm is well-known in the field of distributed systems and ad-hoc networks ([RHH01],
[Bir93]) and offers a suitable programming abstraction for systems collecting a manifold of complex de-
vices, which cooperate and coordinate to reach a common goal [EGHK99].
In a sensor network, for example, nodes that share some neighborhood relationship can organize themselves
in groups that constitute single addressable entities for the programmer and within which nodes can effi-
ciently communicate and collectively exploit local resources. The Hood and Abstract Regions paradigms
are the approaches that will now be closer analyzed.

Hood. Whitehouse et al. managed to define the neighborhood concept as a proper programming prim-
itive by designing Hood, an abstraction “which allows users to think about algorithms directly in terms
of neighborhoods and data sharing instead of decomposing them into messaging protocols, data caches
and neighbor lists” [WSCB04]. For a given network task, Hood defines the membership criteria and the
attributes to be shared within a group and provides an interface that shows the names of the current
neighbors as well as the list of the shared attributes, hiding to the applications all the nesting details about
neighbors discovering and data sharing, data caching and messaging within a single group. This group-
based approach seems a suitable solution for sensor networks, since it scales well for increasing network
size, it is robust to node failures and allows dynamic network reconfiguration.

Abstract Regions. Another neighborhood-based approach is also followed in the design of Abstract Re-
gions, a set of “general-purpose communication primitives for sensor networks that provide addressing,

c©Embedded WiSeNts consortium: all rights reserved page 17



Embedded WiSeNts System Architectures and Programming Models

data sharing and reduction within local region of the network” [Wel03]. Regions are just a collection of
nodes and may be defined on the base of geographical, topological or connectivity predicates such as “all
nodes within 10 meters” or “all nodes in 1-hop communication distance”, and nodes within a region com-
municate, share variables and data, and provide aggregation. Abstract Regions provide a communication
abstraction that simplifies application design by hiding local actions within regions (communication, data
dissemination and aggregation) and by allowing applications to explicitly trade off resource consumption
and accuracy of global operations [WM04].

3.2.8 Spatial Programming

Accessing network resources using spatial references, in the same way as in traditional imperative pro-
gramming variables are accessed using memory references, is the underlying idea of Spatial Programming,
a space-aware programming paradigm particularly suitable for distributed embedded systems. In this view,
a networked embedded system is seen as a single virtual address space and applications can access net-
work resources by defining a spatial reference, i.e. a pair {space:tag}, where space indicates the expected
physical location and tag a property of the demanded network resource [BIK+04].
A system that supports the Spatial Programming abstraction has been implemented by Borcea et al.
using Smart Messages, a software architecture that recalls many concepts and constructs typical of mobile
agents [BIK+02].
Other systems that exploit the Spatial Programming approach are SIS [BW99], Close Encounters [KST99]
and Ubibus [BCPB04]. In these works, Cooperating Objects are used as data symbols that cover a given
geometrical shape and the physical space is used as a way to structure information and processing. The
idea is to annotate existing interactions of physical entities with computing actions. These actions are
triggered according to geometrical conditions, in particular physical proximity.

3.2.9 Shared Information Space

Devices that need to cooperate to accomplish a global task, need also to share data and information about
their internal states. In traditional centralized systems Shared Information is usually stored in a physical
central place, accessible for all entities participating in the system.
In systems like sensor networks, sensor nodes need to cooperate and coordinate and thus need to share
information in order to efficiently perform high-level sensing tasks. A centralized solution is, however, not
suitable for such systems since making single nodes reporting data and state information to a central unit
poses an extremely high communication overhead (thus, inefficient energy management) and provides a
single point of failure. Since useful information is “spread” among a manifold of single entities, a dis-
tributed solution is needed. Koberstein et al. proposed to assume a sensor network to behave like a swarm,
where nodes cooperate with each other by sharing knowledge about swarm state and external conditions
[KLBF04]. This knowledge is “stored” in a distributed virtual Shared Information Space (dvSIS), an
abstract entity that may be represented as union of local instances stores on single sensor nodes. Since
a single local instance may contain information that is no-longer valid or may be inconsistent with the
local instance of other nodes, requirements on consistency and completeness need to be very strict. Using
broadcast, a single node can publish new acquired data in the dvSIS, thus other nodes can enhance their
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local instances just by listening to broadcasts. Even if it is often desirable that all participating nodes have
identical views on this space (i.e., all nodes see the same data items), a more efficient implementation can
be provided if nodes are allowed to have slightly different views on the space, without affecting a correct
global behavior of the network.

The shared information space paradigm is also useful to coordinate mobile computing and ubiquitous com-
puting applications. Tuple spaces similar to Linda are used in mobile computing with LIME [PMR99], and
a spatial tuple space enabling spatial programming for ubiquitous computing is proposed in the SPREAD
system [CB03].

3.2.10 Other Approaches

Among the other approaches presented we would also like even if only briefly to discuss comprehend:

Service Discovery. Systems adopting this approach allow a node to discover services available in the
current context, in particular those provided by neighborhood nodes. This abstraction is related to tradi-
tional distributed computing approaches, such as client-server interactions or distributed objects method
invocations. Typically, an object uses the service discovery service prior to being able to interact with
the neighboring objects. Some existing systems based on this approach are JINI [Wal99], Bluetooth SDP
[bt:01], Cooltown URL beaming [KBM+00].

Client-Server Approaches. In this simple approach, each Cooperating Object hosts one (or more)
server(s) enabling other objects to use its services. The Cooltown system is typical of this approach, where
Cooperating Objects (printers, etc.) are running embedded web servers, accessed by other objects (PDAs
etc.) running web clients.

Distributed Objects. This approach is similar to the previous one, but services are provided by objects (in
the object-oriented sense), and interactions between these objects are supported through remote method
invocation. Some examples of this approach include JINI and CORBA’s ORB [Wal99], [Wea02].

Some other interesting approaches presented in the research community like EnviroTrack [ABC+04,
BNW+03], MiLAN [HMCP04]. Impala [LM03] and TinyCubus [MLM+05, MMLR05] are discussed in
Sections 4.1.4 and 4.1.5.

3.3 Summary and Evaluation

In Section 3.1 we discussed the fundamental attributes of Cooperating Objects and derived from them the
requirements with which an adequate programming abstraction should be able to comply in order to allow
an end-user to make a proper and efficient use of the system. On the basis of the listed requirements we
outlined the characteristics that in our opinion should be considered as the most significant when evaluating
the suitability of a programming abstraction for Cooperating Objects. In particular, we underlined that
the following aspects should be considered:
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• Ease of programming and Expressiveness. Does the abstraction provide easy-to-use programming
primitives? How expressive is the provided set of programming primitives? Does this set allow to
access all the functionalities the network is able to provide? Does the abstraction allow an application
developer to program the network as a whole, i.e., to specify global network tasks instead of single
devices roles?

• System Diversity. Does the abstraction hide device heterogeneity to the programmer?

• System Dynamic. Is the abstractions able to deal with unknown/unstable connectivity, topology
and/or network size? How does the abstractions deal with temporary or permanent device failures?

• Environmental Dynamic. Does the abstraction provide adequate primitives to define, detect and
react to real-world events?

• Resource Constraints. Is the abstraction able to cope with hardware, computing and power con-
straints?

• Scalability. Is the set of provided programming primitives suitable for growing network size and/or
density?

• Deployment and Maintenance. Is it possible to perform a resource-efficient debugging at appli-
cation level?

In Section 3.2 we provided a survey on the past and ongoing work on programming models for Cooperating
Objects. The surveyed approaches were sorted in different categories and for each category we presented
a concrete implementation example. We thus discussed along the way the most known and successful
programming abstractions specifically targeted to Cooperating Objects, and provided an overview on
existing running systems like TinyDB, DSWare, Maté, MagnetOS, SensorWare, Generic Role Assignment,
Hood and Abstract Regions, just for citing a few.
Most of the proposed approaches were designed for a specific application scenario or were tailored to some
specific design goals and appear thus able to comply with only a subset of the above listed requirements.
and even if most of them (e.g., database approach, agent-based approach, event-based approach, virtual
markets) are not new, they required significant adaptation for being used for Cooperating Objects and/or
sensor networks. These approaches differ with respect to ease of use, expressiveness, scalability, overhead,
etc., as we will not outline by means of three representative examples, namely, TinyDB, SensorWare and
DSWare.
TinyDB provides the user with a declarative query system which is very easy to use. The database approach
hides distribution issues from the user and rather than programming individual objects, the network can be
programmed as a single (virtual) entity. On the other hand, the expressiveness of the database approach
is limited in various ways. Firstly, adding new aggregation operations is a complex tasks and requires
modifications of the query processor on all objects. But more importantly, it is questionable whether more
complex tasks can be appropriately supported by a database approach. For example, the system does
not explicitly support the detection of spatio-temporal relationships among events in the real-world (e.g.,
expressing interest in a certain sequence of events in certain regions). The system also suffers from some
scalability issues, since it establishes and maintains network-wide structures (e.g., spanning tree of the
network, queries are sent to all devices). In contrast, many sensing tasks exhibit very local behavior (e.g.,
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tracking a mobile target), where only very few devices are actively involved at any point in time. This
suggests that TinyDB cannot provide optimal performance for such queries. Additionally, the tree topology
used by TinyDB is independent of the actual sensing task. It might be more efficient to use application-
specific topologies instead. A clearly different approach is the one followed in SensorWare, where an
imperative programming language is used to task individual nodes. Even rather simple sensing tasks result
in complex scripts that have to interface with operating system functionality (e.g., querying sensors) and the
network (e.g., sending, receiving, and parsing messages). On the other hand, SensorWare’s programming
paradigm allows the implementation of almost arbitrary distributed algorithms. Typically, there is no need
to change the runtime environment in order to implement particular sensing tasks. However, the low
performance of interpreted scripting languages might necessitate the native implementation of complex
signal processing functions (e.g., Fast Fourier Transforms, complex filters), thus requiring changes of the
runtime environment in some cases. SensorWare allows the implementation of highly scalable applications,
since the collaboration structures among sensor nodes are up to the application programmer. For example,
it is possible to implement activity zones of locally cooperating groups of sensor nodes that follow a tracked
target. The SensorWare runtime does not maintain any global network structures. One potential problem
is the address-centric nature of SensorWare, where specific nodes are addressed by unique identifiers, thus
potentially leading to robustness issues in highly dynamic environments. Another interesting comparison
can be made with respect to DSWare, a system that provides compound events as a basic programming
abstraction. However, a complete Cooperating Objects application will require a number of additional
components besides compound event detection. For example, code is needed to generate basic events
from sensor readings, or to act on a detected compound event. DSWare does not provide support for this
glue code, requiring the user to write low-level code that runs directly on top of the sensor node operating
system. This makes the development of any application a complex task, while at the same time providing
a maximum of flexibility. DSWare supports only a very basic form of compound events: the logical and of
event occurrences enhanced by a confidence function. It might be worthwhile to consider more complex
compound events, such as explicit support for spatiotemporal relationships among events (e.g., sequences
of events, non-occurrence of certain events). Note that more restrictive compound event specifications
can avoid the transmission of event notifications and can hence contribute to better energy efficiency and
scalability. Without re-discussing all the abstractions surveyed in Section 3.2, we can conclude that the
examined approaches exhibit a tradeoff between ease of use and expressiveness. While TinyDB is easy
to use, it is restricted to a few predefined aggregation functions. More complex queries either require
changes in the runtime environment, are inefficient, or cannot be expressed at all. While SensorWare
and DSWare support the efficient implementation of almost arbitrary queries, even simple sensing tasks
require significant programming efforts. Narrowing this gap between ease of use and expressiveness while
concurrently enabling scalable and energy-efficient applications is one of the major challenges in the design
of adequate programming abstractions for Cooperating Objects. It is not yet clear, whether suitable
programming models will be inspired by known paradigms as in the presented examples or if completely
new approaches need to be defined.
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4 System Architectures

As we already mentioned in the introduction, we will refer to a System Architecture as “the structure and
organization of a computing system, as a set of functional modules and their interactions”. In this section
we will survey the state of the art of system architectures for Cooperating Objects. We divide this survey
into two parts:

• Node internals. This part presents several possible abstraction levels in a single node. Operat-
ing systems, the simplest approach, provide basic system functionality including an uniform way of
accessing the hardware. A Data Management Middleware hides the data sources and offers pre-
computed information to applications, in some cases also in collaboration with other Cooperating
Objects. Virtual Machines abstract from hardware completely, offering a virtual execution envi-
ronment to the user. Adaptive System Software hides the changing environment of a real-world
Cooperating Object from the user.

• Interaction of nodes. This part presents system architectures topics related to interaction of nodes.
We abstract two main sets of functionalities, namely low-level functionalities including tasks corre-
sponding to physical, link, routing, and transport layers as well as high-level functionalities, including
coordination and support, clustering, timing and localization, addressing, lookup, collaboration, fail-
ure detection, and security.

4.1 System Architectures: Node Internals

In this section we will survey the state of the art of node internal system architectures. Our survey
discusses operating systems, virtual machines, data management middleware and adaptive system software
for Cooperating Objects.
The most important requirements are related to the requirements discussed in Section 3.1. The main
difference to the architectures designed for traditional systems are the resource-constraints, in particular
regarding the memory footprint and limited energy budget of the target system. Therefore, energy-
efficiency and a small memory footprint are indispensable features of these architectures. Other important
requirements include flexibility to cope with different applications and hardware as well as adaptivity and
a small learning curve. Further, portability can be regarded as a desirable feature.

4.1.1 Data-centric and service-centric approach

The field of Cooperating Objects comprises a wide range of applications 3. Sensor networks scenarios are
said to be data-centric whereas pervasive or ubiquitous computing scenarios are more service-centric. In
this section, both approaches are described.
A service is a well-defined and self-contained function that does not depend on the context or the state of
other services. The service is executed on the explicit request of a caller which has to know the interface
of the service. A response is returned after the completion of the service.
In a data-centric approach, the execution is controlled by the data. For example, on the basis of the
type of incoming data, the appropriate function is called which is able to handle this type. Although

3See also study 3.1.1)
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the user of a data-centric system may communicate with it by functions of a well-defined interface and
although the components of a system may internally exchange the data over such interfaces, in contrast
to a service-centric approach, the desired functionality is not specified explicitly by the name of the service
but implicitly by the passed data.
There is no obvious hierarchical ordering of service-centric and data-centric approaches. On the one hand,
a data-centric system could use several services to fulfil its task. But on the other hand, a service-centric
approach could fall back on a lower-level data-centric query. Thus, this approach abstracts from the data.

4.1.2 Operating Systems

In this section, we present different operating systems for Cooperating Objects. Unlike general-purpose
desktop operating systems such as Windows or Linux, these operating systems run on devices that are
designed for special-purpose tasks. The main tasks of these operating systems is to provide an abstract
interface to the underlying hardware and to schedule system resources.
After a short discussion on scaled-down version of Linux and Windows, we briefly present some operating
systems designed for handheld devices such as PDAs and mobile phones. These devices can be regarded
as part of a network of Cooperating Objects (the first mobile phones with attached sensors are already
available),or they can be used to access wireless sensor networks.
Many of the traditional embedded operating systems are designed for real-time systems with small mem-
ory footprints such as robot arms or break systems, whereas most current operating systems targeted for
wireless sensor networks are not real-time systems. We first present three of these operating systems in
more detail, namely TinyOS, Contiki, and Mantis. These systems span the whole spectrum of concur-
rency: TinyOS does not provide any multithreading, Contiki provides multithreading as a library for those
applications that explicitly require it, and Mantis is a layered multithreaded operating system. Then other
sensor node operating systems, SOS, kOS, Timber and DCOS are briefly presented.

• Scaled down versions of desktop operating systems

– Windows. Microsoft Windows is the most common operating system for desktop computers.
There are also embedded systems that run Windows XP, for example ATMs, set-top boxes and
ticket vending machines. Windows XP Embedded is a modular cut-down version of XP that
allows the designer to choose the modules to be used. This way the size of a system without
networking, GUI and device drivers is limited to about four to five MBytes of memory.

– Linux. Since Linux is covered under the GPL license 4, anyone can customize Linux to his PDA,
Palmtop or other mobile or embedded device. Therefore, a multitude of scaled-down Linux
versions exist. These include RTLinux (Real-Time Linux), an extension of the Linux kernel that
provides real-time guarantees by inserting an additional abstraction layer between the kernel
and the hardware, uClinux, a scaled-down Linux version for system without a memory mapping
unit and thus no isolation between kernel and user-space processes, Montavista Linux with
Linux distributions for ARM, MIPS, and PPC, ARM-Linux, and many others.

• Operating Systems for handheld devices

4General public License, http://www.gnu.org/copyleft/gpl.html
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– Palm OS. The Palm OS is specifically designed for PDAs featuring a small screen, less pro-
cessing power than desktop PCs and limited memory. In Palm OS, the kernel is responsible
for thread scheduling, handling hardware interrupts, and other low-level management tasks.
Although Palm-applications are single-threaded, the kernel itself uses multiple threads.

– Symbian OS. Symbian OS is a robust multi-tasking operating system, designed specifically for
wireless environments and the constraints of mobile phones. The core kernel’s size is less than
200 KBytes. The OS has support for handling low memory situations and a power management
model. Symbian OS runs on fast, low power, low cost CPU cores such as ARM processors.

– Windows CE. In contrast to Windows XP Embedded, Windows CE has a different codebase
than Windows XP. Windows CE is particularly designed for small hand-held devices. Windows
CE is a preemptive multitasking operating system allowing multiple applications, or processes
to run within the system simultaneously. Further, Windows CE provides deterministic interrupt
latencies and real-time properties. Windows CE also provides programmable power conserving
mechanisms. According to Microsoft the code size is 200 KBytes without graphics, but the
code size increases dramatically when graphic and networking is included.

• Embedded Real-Time Operating Systems
There exist a large number of embedded real-time operating systems. Here we present a few of
them:

– eCos. eCos [eCo] is an open-source system designed to be highly configurable. eCos has
extensive configuration possibilities and can be scaled up from a few hundred bytes in size to
hundreds of KBytes. eCos provides features such as pre-emptable tasks with multiple priority
levels, low latency-interrupt handling,multiple scheduling policies, and multiple synchronization
methods. The eCos development environment contains a set of Gnu-based tools that assist in
making application specific configurations of eCos for each particular embedded system. eCos
has compatibility layers for POSIX and uITRON.

– QNX. QNX [qnx] is a Unix-like operating system with real-time properties, and is the most
prominent example of a successful micro-kernel design. The micro-kernel is surrounded by
cooperating processes that provide higher level services such as inter-process and low-level
networking communication, process scheduling and interrupt dispatching. QNX features a
very small kernel of about 12 KBytes. QNX is designed for systems running x86, MIPS,
PowerPC or ARM CPUs.

– XMK. XMK (eXtreme Minimal Kernel) [xmk] is an open-source real-time kernel designed
to fit very small micro-controllers, yet be scalable up to larger systems. A minimal kernel
configuration requires only 340 Bytes of ROM and 18 Bytes of RAM.

• TinyOS
TinyOS [HSW+00] is an operating system specially designed for the constraints and requirements
of wireless sensor networks. It is currently the most widely used system for academic research in the
area of sensor networks. TinyOS is available for several platforms, e.g., Mica, Telos, EYES, imote.
Additionally, a TinyOS simulator called TOSSIM is included. We will now briefly survey the most
relevant aspects of this tiny operating system:
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– System modularity. TinyOS builds on a component architecture where both applications
and operating system consists of single, interlinked components. Thus, there is no strict
separation between operating system kernel and application software. The operating system
is not a separate program on which separate applications can rely on. Rather the necessary
components of TinyOS are compiled together with the application to a single executable that
contains both operating system and application components.

Incoming
commands events

Signalled

Incoming
events

Commands
used

internal
statetasks

Figure 1: Schematic component of TinyOS consisting of tasks, internal state, commands, and
events(after [HSW+00])

A component (see Figure 1) consists of fixed-sized state and tasks. Interaction between compo-
nents is provided via function call interfaces that are sets of commands and events. Commands
are used to initiate an action such as the transmission of a message. Events denote the com-
pletion of a request such as the completion of the transmission of a packet or an external
event such as the reception of a packet. An application is composed by choosing a number of
components and “wiring their interfaces together” [LMG+04].

– Scheduling hierarchy. TinyOS uses a two level scheduling hierarchy that lets high-priority
events pre-empt low priority tasks. Events are invoked because of external input such as in-
coming data, sensor input or a timer. They are allowed to signal other events or call commands.
Events and commands must not block the processor with time-consuming operations, but have
to return in short time. Longer calculations have to be performed in a task. Tasks are a form
of deferred procedure calls enabling postponed processing. This way, events can post tasks
for later processing. When the calculation is done, the task can signal an event to inform the
component about the result. Both events and tasks must run to completion after being in-
voked. This precludes the use of blocking statements. Events are implemented using hardware
interrupts, and tasks are implemented using a linear FIFO dispatcher. The dispatcher has a
queue of tasks, where each task is represented by a pointer to a function. In case the task
queue is empty, the system can go into a sleep state and wait for the next interrupt. If this
event posts a task, the dispatcher takes it from the task queue and runs it.

– Concurrency. TinyOS currently does not support multi-threading, blocking or spin loops.
Therefore and as a consequence of the command-event model, many operations in TinyOS
are so-called split-phase. A request is issued as a command that immediately returns. The
completion of the request is signalled by an event. While this approach enables e.g. implicit
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error handling, it complicates program design and development since it more or less forces the
programmer to implement blocking sequencing in a state-machine style.

– Programming. The entire TinyOS system, as well as all applications running under it, is
implemented in the NesC language [GLv+03]. NesC is an extension to the C language that
supports event-oriented programming, i.e., the execution of function as a reaction to certain
system events which is common for sensor networks. nesC introduces several keywords that
allow the modelling of TinyOS components as described above. Using command and event, the
commands, a component is able to receive, and the events, a component signals, can be defined.
The invocation of commands is done via call and the triggering of events via signal. A set
of commands and events can be encapsulated in an interface. The actual implementation
is located in a module which can use and provide (keywords uses and provides) several
interfaces. In a configuration, components are wired together, connecting interfaces used
by components to interfaces provided by others. Every nesC application is described by a top-
level configuration that wires together the components used. Additionally, the nesC compiler
provides compile time checks for finding race conditions. Therefore, it finds all asynchronous
code, i.e., code that is reachable from at least one interrupt handler. Every use of a shared
variable from such asynchronous code is a potential race condition if the programmer does not
use the atomic statement. This check can be done since the compiler processes the complete
code including application and operating system components and has, therefore, knowledge
about the interaction between them.

The foremost feature of TinyOS is its small code size and memory usage, and its component model
that lets the system designer specify the system dependencies at compile time. The main drawback
is the event-driven concurrency model which restricts applications to be implemented as explicit state
machines. TinyOS is open-source software, published under a three-clause BSD license. Because
of its widespread use in the wireless sensor networking research community, there is a wealth of
implementations of various communication protocols for sensor network available.

• Contiki
Contiki [DGV04] is an operating system designed for networked and memory constrained systems.
Contiki is in many aspects similar to TinyOS, but has additional support for threads and dynamically
loadable programs. Contiki includes the uIP stack for TCP/IP communication. Important proper-
ties of Contiki include its execution models, its system architecture, dynamic reprogramming, and
portability:

– Execution models. In order to keep its memory footprint small, Contiki is based around
an event-driven kernel. Unlike TinyOS, Contiki allows applications to be written in a multi-
threaded fashion. Multi-threading is implemented as a library that is optionally linked only with
those applications that specifically require a threaded model of execution. The event-driven
nature of the kernel makes the system compact and responsive, whereas the multi-threading
makes it possible to run programs that perform long-running computations without completely
blocking the system. For example, performing user authentication on a mote requires up to 440
seconds [BGR05]. Multi-threading enables the the system to handle incoming packets while
performing such a long computation. Additionally, Contiki provides a third execution model
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called protothreads [DSV05]. In event-based systems, programs usually have to be imple-
mented as explicit state machines and thus are hard to debug and maintain. Protothreads
are stack-less thread-like constructs. They allow programs to be written in a sequential fashion
and like threads provide conditional blocking on top of the event-driven system. Unlike threads,
protothreads are extremely lightweight requiring only two bytes of memory per protothread
and no additional stack.

*ernel

Core

RAM

ROM

Core

+oaded program

+oaded program

2ommunication service

2ommunication service

+anguage run!time

Program loader

*ernel

Figure 2: Contiki: partitioning into core and loaded programs [DGV04]

– System architecture and partitioning. A Contiki system is partitioned into two parts: the
core and the loaded programs (see Figure 2). The partitioning is made at compile time
and is specific to the deployment in which Contiki is used. Typically, the core consists of the
Contiki kernel, the program loader, the most commonly used parts of the language, run-time
and support libraries, and a communication stack with device drivers for the communication
hardware. The core is compiled into a single binary image that is stored in the devices prior to
deployment. The core is generally not modified after deployment, even though it is possible to
use a special boot loader to overwrite or patch the core. A Contiki system consists of the kernel,
libraries, the program loader, and a set of processes. A process may be either an application
program or a service. A service is a process that implements functionality that is used by
other processes such as protocol stacks and data handling algorithms. Services can be seen as
shared libraries which can be replaced during run-time. The kernel consists of a lightweight
event scheduler that both dispatches events to running processes and periodically calls polling
handlers used to e.g. check for status updates of hardware devices. The kernel also supports
two kinds of events, namely asynchronous events which are a form of deferred procedure calls
and synchronous events mainly used for interprocess communication. The kernels enqueues
asynchronous events in a special event queue and dispatches the events later to the target
process.

– Dynamic reprogramming. When developing applications for sensor networks, the ability to
reprogram the sensor nodes without requiring physical access to the nodes greatly simplifies
development and reduces the development time. Contiki has support for loading individual
programs from the network, which makes it possible to dynamically reprogram the behavior of
the network. After a program has been loaded into memory, the program’s initialization function
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is called that may replace or start processes. A thin service layer, conceptually situated next
to the kernel, provides service discovery and run-time dynamic service replacement within each
sensor node. The ability to load and unload individual applications is important for wireless
sensor networks, because an individual application is much smaller than the entire system
binary and therefore requires less energy when transmitted through a network. Additionally,
the transfer time of an application binary is less than that of an entire system image.

– Portability. Contiki is designed to be portable across a wide range of different platforms.
Contiki runs on several platforms, including the ESB nodes from FU Berlin, Amtel AVR and
the Intel x86, and the Z80 platform.

Module Code size Code size RAM
(AVR) (MSP430) usage

10 +
Kernel 1044 810 + 4e + 2p
Service layer 128 110 0
Program loader - 658 8
Multi-threading 678 582 8 + s
Timer library 90 60 0
Replicator stub 182 98 4
Replicator 1752 1558 200

230 + 4e +
Total 3874 3876 + 2p + s

Table 1: Size of compiled Contiki code, in bytes [DGV04].

Contiki ’s memory requirements of an example sensor data replicator application are shown in Table 1.
They depend on the maximum number of processes that the system is configured to have (p), the
maximum size of the asynchronous event queue (e) and, if multi-threading is used, the size of the
thread stacks (s).

• Mantis
One of the main design goal of the Mantis system [ABC+03] is ease of use to enable a small learning
curve and rapid prototyping while meeting the resource constraints of wireless sensor networks in
terms of limited memory and power. The other key goal of Mantis is flexibility by providing expe-
rienced programmers sophisticated sensor networks features including dynamic reprogramming over
the radio and remote debugging of sensor nodes. The architecture of Mantis includes the following
entities:

– Kernel and scheduler. The goal of the Mantis and its kernel is to leverage familiar, traditional
OS services in the realm of resource-constrained wireless sensor networks. Mantis’ design
resembles a traditional layered multithreaded design as shown in Figure 3. The Mantis kernel
is designed similar to a traditional UNIX -style scheduler providing a subset of POSIX -threads.
In particular, the scheduler supports priority-based thread scheduling as well as binary and
counting semaphores. The main data structure of the kernel is a table holding one entry per
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Figure 3: Mantis classical OS architecture [ABC+03]

thread. The size of the table cannot be adjusted dynamically but is determined at compile time
(12 entries by default). Therefore, there is a fixed level of memory overhead. Each thread table
entry has a size of 10 Bytes including e.g. a stack pointer, priority level, and the thread’s starting
function. The scheduler provides preemptive scheduling with time slicing. The hardware posts
timer interrupts that cause the scheduler to initiate a context switch. Other interrupts than
these are handled by the corresponding device drivers. On reception of an interrupt, device
drivers post a semaphore to activate the corresponding thread. There is a special thread called
the idle thread. This threads has the lowest priority and therefore runs when no other thread
is runnable. The idle thread can be used to implement power-aware scheduling.

– Network stack. The design goal of Mantis’ networking stack is efficient use of the limited
memory as well as flexibility and convenience. The networking stack features a traditional
layered design where the different layers can be implemented as several user-level threads or in
one thread. The latter solution minimizes memory usage, avoids copying data between different
threads and enables cross-layer optimizations. The advantages of the layered solution are
modularization and flexibility. Mantis standard network stack consists of four layers: application
layer, network layer, MAC and physical layer. The latter two are implemented as one user-level
thread called base thread. If the network layer is implemented as a separate thread, the network
layer thread blocks on a semaphore until the base thread posts the semaphore after e.g. the
reception of a packet. The threaded model makes it also possible to activate or deactivate
a particular protocol, e.g. a routing protocol. Mantis also enables the coexistence of more
than one thread for a given task, for example, several routing protocol threads can run at the
same time. In such a scenario, incoming packets are directed to the corresponding thread on a
per-packet basis.

– Dynamic reprogramming. Mantis enables reprogramming of both the entire operating system
and parts of the program memory by downloading a program image onto EEPROM, from where
it can be burned into flash ROM. This capability is implemented as a system call library. The
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entire Mantis kernel uses about 12 KBytes ROM, and approximately 500 Bytes RAM. Thus,
the memory requirements of Mantis are larger than those of TinyOS and Contiki. Mantis
also features what the Mantis developers call a multimodal prototyping environment where the
same code can be executed on both physical and virtual sensor nodes across X86 and Atmel
platforms. In this prototype environment, both types of nodes can coexist and communicate
with each other in a hybrid network. This is enabled by preserving a common C API across the
platforms. With minor modifications, Mantis can be executed as an application running on X86
on both Windows and Linux since both operating systems support the AVR microcontroller.

TinyOS Contiki Mantis
Concurrency events optional threading threads

& protothreads
Code size (ROM and RAM) smallest medium largest
Ease of learning hardest medium ease of programming

major design goal

Table 2: Comparison of TinyOS, Contiki and Mantis

Table 2 compares the important features of TinyOS, Contiki and Mantis related to concurrency,
code size and ease of learning. TinyOS is highly optimized to achieve a small code size, but hard
to program while Mantis more traditional structure of a layered multithreaded operating system
leads to the largest code size but simplifies programming. Contiki by design combines flexility with
low memory footprint. While for non-expert programmers TinyOS is tricky to program [LC02],
Mantis simplifies programming. The same is true for protothreads available in the Contiki operating
system. However, Mantis large memory footprint makes it impossible to implement it on systems
with limited memory such as some PIC micro-controllers to which TinyOS has been ported [LR05].
Smaller memory is both more cost-efficient and energy-efficient. For example, micro-controllers
featuring less RAM have also been used for sensor nodes that solely rely on energy scavenged from
the environment [MM05].

• Other sensor node operating systems

– SOS. The SOS operating system [HRS+05] is very similar to Contiki, in particular the design
emphasis on dynamically loadable modules motivated by the need for code updates during
deployment of a sensor network. Like Contiki, SOS consists of dynamically-loaded modules
and a small kernel. The kernel implements messaging, dynamic memory and module loading
and unloading at runtime. In SOS, modules are position independent binaries implementing
a specific function. Applications are composed of one or more modules. Unlike Contiki, SOS
does not (yet) provide multi-threading. The code size of the SOS core including a facility
to distribute programs is about 20 KBytes and RAM usage is more than 2 KBytes. The
ROM usage is comparable to TinyOS running Deluge, a reliable distribution protocol used to
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distribute e.g. OS images in a sensor network. The RAM usage of TinyOS and Deluge is,
however, only a fourth of the RAM requirements of SOS.

– kOS. The kOS (kind-of or kilobit) operating system [BSSH05] is designed for iterative appli-
cations. In order to keep the duty cycle of applications below a certain threshold and thus to
save power, the kOS scheduler adapts the periods of the applications. To keep the OS small
and simple, the execution model used requires all applications to run to completion before
other applications execute. kOS interacts with applications using a simple messaging interface.
While these design decisions keep kOS small, they constraint its usage to iterative applications
and do not enable e.g. more sporadic tasks such as dynamic loading of modules. The minimal
memory footprint of kOS without any application is similar to the size of Mantis, requiring
slightly above 12 KBytes ROM and about 500 Bytes RAM.

– Timber. Timber [KLN05] is a self-contained functional language based on an extension of
Haskell. Since Timber is self-contained, it can be run without any other run-time or operating
system and can thus be regarded as a stand-alone operating system also. In fact, Timber is
used as the operating system for the Mulle sensor nodes [JVE+04]. The language semantics
are the most fundamental part of the OS and hence the run-time features such as scheduling,
threading, memory management can be tailored to each individual application. In contrast
to other operating systems for sensor nodes, Timber also supplies sufficient infrastructure for
reactive concurrent programming and realizing real-time constraints.

– DCOS. The main objectives of the DCOS 5 (Data Centric Operating System) [DHH04], is
to provide real-time guarantees, energy-efficient operation and online reconfigurability. DCOS
uses an architecture which the authors call data centric. In this architecture, data is the main
abstraction of events. The scheduled entities in DCOS are software components called Data
Centric Entities (DCE). These entities produce data and they can be triggered by other
data. While the system is running, DCOS adapts the system behavior by dynamically replacing
DCEs and/or reconfiguring the data flow between DCEs.

4.1.3 Virtual Machines

Some systems use a virtual machine instead of an operating system running native machine code. Since
the virtual machine code can be made smaller the energy consumption of transmitting the code over the
network can be reduced. One of the drawbacks is the increased energy spent in interpreting the code for
long running programs, the energy saved during the transport of the binary code is instead spent in the of
execution of the code.

• Maté
In order to provide run-time reprogramming for TinyOS, Levis and Culler have developed Maté [LC02]
(also called Maté Bombilla), a virtual machine for TinyOS devices. Code for the virtual machine
can be downloaded into the system at run-time. The virtual machine is specifically designed for the
needs of typical sensor network applications.

Maté is a byte-code interpreter running on TinyOS. Byte code is broken into capsules of 24 instruc-
tions, each one byte in length. This makes the capsules fit into a single TinyOS packet. Four types

5Also discussed in study 3.1.3 (Vertical Functions, Section 4.7)
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of capsules exist: timer capsules, message receive capsules, message send capsules, and subroutine
capsules. With the latter, programs can be longer than 24 instructions only. Capsules contain their
type and a version number. Maté installs a received capsule if it contains a more recent version
of the specified type than the currently installed one. Capsules are broadcasted with a single forw
instruction.
Three execution contexts are known in Maté: clock timers, message receptions, and message send
requests. Each context has its own two stacks: an operand stack and a return address stack. The
first is used for all instructions handling data, the latter is used for subroutine calls. The maximum
depth of the operand stack is 16, the maximum depth of the call stack is 8. The three types of
events correspond to the execution contexts.
There are three operand types: values, sensor readings, and messages. Many instructions behave
differently for different operands or combinations thereof.
Maté begins execution in response to an event and starts executing the first instruction of the
corresponding context until it reaches the halt instruction. Contexts can run concurrently; their
execution is interleaved at instruction granularity. Maté does not allow asynchronous operations.
For example, it waits until a message is sent successfully or until an analog-digital conversion is done.
Sending a message or sampling a sensor can be done as a single bytecode instruction. Messages
are automatically routed to the destination; a task is automatically enqueued on arrival. Eight
instructions can be defined by users, for example to do some complex data processing. They are
implemented in TinyOS. Thus, a specially tailored version of Maté is to be built.
Maté on the Atmel AVR requires almost 40 KBytes ROM and more than three KBytes RAM and is
thus larger than SOS and TinyOS using Deluge [HRS+05]. The energy cost of the CPU overhead
of a bytecode interpreter is outweighed by the energy savings of transmitting such concise program
representations for a small number of executions. Native code is preferable for a large number of
executions of the code since for simple instructions (e.g., logical operations) Maté takes 33 times
more clock cycles than the native TinyOS implementation. Thus, any non-trivial mathematical
operation is infeasible. Even though such operations can be implemented in native code and called
as user instructions, they cannot be changed during runtime. An advantage is that all code runs in
a sandboxed virtual environment and benefits from all of its safety guarantees.
Application Specific Virtual Machines (ASVM) [LGC05] is a enhancement of Maté and addresses
its main limitations with respect to flexibility, concurrency, and propagation. ASVM supports a wide
range of application domains, whereas Maté is designed for a single domain only. In Maté, only a
single shared variable can be used. In ASVM, an operation component can register several shared
variables, and the system ensures race-free and deadlock-free execution. The code propagation is
not only done via broadcasts, but with a control algorithm based on Trickle to detect when code
updates are really needed on other nodes.
Each ASVM consists of a template, which includes a scheduler, a concurrency manager, and a cap-
sule store, and of extensions, which are the application-specific components that define a particular
ASVM. Handlers as extension of Maté’s event contexts are code routines that run in response to sys-
tem events. Operations are the units of execution functionality, divided into primitives and functions.
A particular language is compiled to primitives which are, therefore, language specific. Functions
are language independent and provided by the user to tailor an ASVM to a particular application
domain. Capsules are again the units of code propagation, but can be longer than in Maté and are,
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therefore, split into fragments during propagation. Building an ASVM involves connecting handlers
and operations to the template.
Again, an ASVM instruction has an overhead of 400 cycles, thus making complex mathematical
code in ASVM infeasible. But comparing to Maté, it is easier in ASVM to push expensive bytecode
operations to native code using functions to minimize the amount of interpretation.

• MagnetOS
MagnetOS [BBD+02, LRW+05] is a distributed operating system that simplifies the programming
of ad hoc networking applications by making the entire network appear as a single virtual machine.
It provides adaptation to the resource constraints, and changes in the network (e.g., topology, appli-
cation behavior, available resources), increases the system longevity through good power utilization,
supports nodes with heterogeneous resources and capabilities, and is highly scalable. Unlike Maté,
MagnetOS targets larger platforms such as x86 laptops, Transmeta tablets, and StrongArm Pock-
etPC devices.
Applications consist of a set of event handlers that are executed in response to a system, sensor, or
application-initiated occurrence. An event handler stores the instance variables and is free to move
across nodes in the network. Execution consists of a set of event invocations that may be performed
concurrently.
The MagnetOS system provides the image of a virtual Java machine. Regular Java applications
are partitioned into distributable components that communicate via events by a static partitioning
service. Thereto, applications are rewritten at byte-code level. For example, object creations are
replaced by calls to the MagnetOS runtime which selects an appropriate target node and constructs
a new event handler at that location. Remote data accesses, lock aquisitions and releases, type-
checking and synchronization instructions are converted as well.
For object creation, MagnetOS provides at-most-once semantics. The system performs health checks
using keep-alive messages only for long-running synchronous event invocations.
Several algorithms in the core of the operating system decide when and where to move application
components. All of them try to shorten the mean path length of data packets sent between com-
ponents of an application by moving communicating objects to topologically closer nodes. LinkPull
(formerly: NetPull) operates at physical link level and migrates components one hop at a time in
the direction of greatest communication. PeerPull (formerly: NetCenter) operates at network level
and is, therefore, able to migrate a component multiple hops at a time directly to the host with
which a given object communicates most. NetCluster migrates a component to a randomly chosen
node within the cluster it communicates with most. Finally, TopoCenter migrates components to a
node such that the sum of migration cost and estimated future communication costs is minimized.
Thereto, a partial view of the network is needed which is gathered along a packet’s path by each
node attaching its single-hop neighborhood.
When MagnetOS decides to move an event handler, it sets a flag. The rewritten code detects the
flag and checkpoints its current state. MagnetOS transports this state and resumes the computation
at the destination. Application writers can also manually control the placement of components. A
component can be strictly bound to a node or a starting node can be defined where the component
is migrated to first and from where it can migrate further using the mechanisms described above.

• SensorWare
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In SensorWare [BHS03], lightweight and mobile control scripts based on Tcl can be defined. Their
replication and migration allows the dynamic deployment of distributed algorithms on sensor nodes,
thus making them easily (re)programmable. SensorWare targets richer platforms than Maté like
iPAQs since the framework is almost 180 kBytes in size. Although energy-efficiency is also a main
consideration of the project, it is not clear how such a script-based solution can be implemented
efficiently in sensor nodes with high resource limitations. On the other hand, code is more compact
in SensorWare, it provides built-in multi-user support, and it is portable to other platforms.
SensorWare is built upon the operating system of the sensor nodes and uses its standard functions and
services. The OS provides hardware abstraction. Control scripts rely completely on the SensorWare
layer, while other static applications and services can use the standard functions and services of both
SensorWare and the operating system.
Tcl is used as the basic scripting language in SensorWare. All SensorWare functions are defined
as new Tcl commands, thus integrating fully into Tcl. Such commands abstract specific tasks,
like communication with other nodes, or data sensing and filtering. Special commands allow the
forwarding of the current program to other nodes while trying to avoid unnecessary code transfers
by transmitting the code only if the script is not already running on the neighboring nodes.
SensorWare is an event-based language. But as SensorWare supports multi-threading, control scripts
can use blocking waits until an event occurs. Examples for such events are the reception of a message,
the expiration of a timer, or the availability of one or more sensor data.
There are two different types of task classes in the run-time environment of SensorWare: fixed tasks
and platform-specific ones. The former are always included in every SensorWare implementation and
handle system functions such as spawning of new scripts, surveillance of resource contracts, radio
transmission and reception, etc. The latter depend on the hardware configuration and have to do
with the specific types of sensors available at a given sensor node.
Threads in SensorWare are coupled with queues. Queues of scripts are receiving events. Queues for
radio, sensors, times, etc. receive events of the device they are connected to as well as messages
that declare interest in this event type. System Messages can be exchanged between system threads.
To address the problem of heterogeneity, any module or service (e.g., radio, sensing device, timer
service) in SensorWare is represented as a virtual device. Every device implements a common
interface with four commands to communicate with the device. Using these commands, it is possible
to ask for information, to trigger an action, and to create and dispose event IDs. To facilitate porting
the framework to other platforms, wrapper functions for several OS functions and hardware accesses
are used.

4.1.4 Data Management Middleware

Operating systems usually provide only means to access the hardware – especially sensors – in a uniform
way, but no means to manage the data flow. Thus, the actual data management functionality is located
in the application layer. The Data Management Middleware is an abstraction layer between the sensor
network and the application layer that provides access to information on a higher semantic level, including
the storage, distribution, and querying of this information. So, it also allows the transparent addition of
new sensor and new sensor types.
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• EnviroTrack
The main purpose of the EnviroTrack project [ABC+04, BNW+03] is to provide an efficient imple-
mentation for the class of applications that need to track the locations of entities in the environment.
EnviroTrack distinguishes itself from traditional localization systems in the assumption of coopera-
tive users that can wear beaconing devices that interact with location services in the infrastructure
for the purposes of localization and tracking.
Therefore, EnviroTrack provides a new abstraction based on context labels and tracking objects so
that as the tracked entity moves, the identity and location of the sensor nodes in its neighborhood
change. The programmer interacts with a changing group of sensors through a simple object inter-
face.
EnviroTrack works by providing the user with a programming abstractions that allow him to specify
context types. This is done by activating a condition called sense which is used by sensors to join
and leave the group of sensors in charge of tracking a given object. The second part of the context
type definition is composed of a series of context variables that define an aggregate state. An ag-
gregation is composed of readings taken by the various sensors of the group about a specific object.
So, for example, this variable could be the average location for cars or a maximum temperature in
a fire-detection scenario. For each context variable, applications define an aggregation function and
two constants: a critical mass and freshness, which modify the aggregation process.
The architecture of EnviroTrack is composed of the following elements:

– Pre-processor. This component emits code that initializes the structures to track context
labels and periodically calls the sense functions to allow entity discovery. It also translates the
definition of context types.

– Group Management. This protocol manages join and leaves of sensors for a specific entity.
It also ensures that there is always at least one leader for the group.

– Aggregate State Computation. Group members send their data to the leader periodically
and the leader collects them, aggregates them and forwards them again to the appropriate
location.

– Directory Services. Context types are hashed to a location which serves as a directory for
that type. Whenever new context labels are created, they register on the directory service their
position which, if they move, is updated accordingly.

EnviroTrack is able to track entities using an energy-efficient protocol and is able to provide fault-
tolerance to message loss, leader failures and aggregate lost.

• DSWare
Data Service Middleware (DSWare) [LSA03, LLS+04] is a specialized layer that performs the inte-
gration of various real-time data services for sensor networks. It provides a database-like abstraction
to sensor networks in a similar way to TinyDB or Cougar.
The distinguishing characteristic of DSWare is its support for group-based decision making and
reliable storage to improve real-time system performance, reliability of aggregated results and reduc-
tion in communication overhead. In order to provide its functionality, DSWare is composed of the
following components:
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– Data Storage. This component takes care of storing data in the network according to the
semantics associated with the data. It also provide some primitives to work with spatially
correlated data, which has two advantages: it enables easy data aggregation and also makes it
possible for the system to perform in-network processing.

– Data Caching. The purpose of this component is to provide multiple copies of popular data in
the regions that need it, so that its availability is high and query execution can be performed in
a faster way. There is a feedback mechanism that allows DSWare to decide on-the-fly whether
or not copies of data should reside in frequent queries nodes. The control scheme uses the
proportion of periodic queries, average response time, etc. to make its decisions.

– Group Management. Allows for the cooperation between various nodes in order to perform
distributed computations, value comparison, etc. This component also supports the implemen-
tation of energy-saving actions like putting some nodes to sleep. For this, the formation and
management of groups of sensor nodes is a crucial function of this component.

– Data Subscription. This component allows for the definition of continuous queries in the
network. It defines the characteristics of the data feeding paths and uses stable traffic nodes
to select the optimal routes. When many base stations make subscriptions for data from the
same sensor node, the Data Subscription service puts copies of the data at intermediate nodes
in order to save on communication costs. It is also able to merge several feeding paths into
one if this saves communication costs.

– Scheduling. This component allows for the scheduling of services to all DSWare components.
It provides two options: energy-aware and real-time scheduling.

• TinyDB
TinyDB [WMG04, MFHH02] is a project developed at the University of Berkeley in cooperation with
Intel Research that aims at providing efficient data acquisition primitives for Sensor Networks. In the
eyes of the TinyDB project, the most important type of query to be supported in sensor networks
are continuous queries, since all other types can be mapped to a continuous one.
TinyDB, which has been implemented on top of TinyOS and runs on the MICA family of sensor
nodes (also developed at UC Berkeley), defines an Acquisitional Query Language (ACQL), very
similar in its structure to traditional SQL, that allows for the efficient retrieval of data within the
network. Where possible, TinyDB performs in-network processing of data in order to reduce the size
of transmissions. For example, the developers of TinyDB have developed TAG, a Tiny AGgregation
engine that supports arbitrary decomposable aggregation functions using a generic and extensible
framework.
For ACQL, all queries create a continuous data stream that can be mapped to each sensor node.
TinyDB assumes the presence of a sink that is able to process the ACQL statement and translate it
into an efficient binary representation that can be processed by each sensor. In TinyDB, the entire
sensor network is a single table where the columns contain all the attributes in the network and the
rows specify the individual sensor data. Using this data model, and special language capabilities
explicitly designed for sensor networks, TinyDB is able to process the following types of queries:

– Event-based queries. Which have a precondition usually given by an event that triggers the
execution of the query.
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– Storage-based queries. Which are able to perform caching and intermediate storage of data
at specific locations in the network.

– Lifetime-based queries. Which run for a specified amount of time in the network, collecting
the necessary data.

Although TinyDB provides a nice abstraction to retrieve data from a sensor network, it is only able to
support applications that obtain data from the sensors and processes it outside the sensor network.
For any other type of processing, it is necessary to create TinyOS components that provide the
required functionality.

• Cougar
Cougar [YG02] is a project developed at Cornell University whose philosophy dictates that monitoring
is best described in a declarative manner. Since for the Cougar project, the sensor network is the
database itself, they provide abstractions to represent the different devices in the sensor network as
a database.
The distinguishing feature of Cougar is the use of Abstract Data Types (ADTs) and virtual relations,
which are a tabular representation of the functions that define the type of data available at different
sensors. Using this information, the Sensor Network is seen as one large table that contains the
data to be queried by the user. Cougar assumes the presence of a front-node that implements a
full-fledged database server and translates the queries issued by the user into a format that can
be understood by each sensor node to answer the query. Each sensor contains an instance of a
mini-server that is able to understand these messages and return the appropriate answer.
The mini-server supports synchronous queries whose results need to be returned immediately and
on-demand, and asynchronous queries, used to monitor threshold events. Using this distinction,
Cougar is able to answer the following types of queries:

– Historical queries. Which usually refer to aggregate queries over historical data, such as: “For
each rainfall sensor, display the average level of rainfall for 1999”.

– Snapshot queries. Which refer to the values of data at a given point in time, such as:
“Retrieve the current rainfall level for all sensors in Tompkins County”.

– Long-running queries. Which refer to the values of data over a certain time interval, such as:
‘‘For the next 5 hours, retrieve every 30 seconds the rainfall level for all sensors in Tompkins
County”.

Although the idea of providing a well-known abstraction to represent the nodes in a sensor network
is interesting, there are certain abstractions like events or publish/subscribe mechanisms that cannot
be mapped to the classic view. However, Cougar is able to provide distribution transparency for
queries issued to the sensor network.

4.1.5 Adaptive System Software

Since the requirements to Cooperating Objects or the system environment can change significantly during
the lifetime and a constant manual adjustment is too costly, several systems have been developed that
perform automatic adaptation.
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• MiLAN
MiLAN [HMCP04] is a “proactive” middleware that aims at providing a bridge between the capa-
bilities of current middleware platforms and the need for proactive rules that have an effect on the
network and the sensors themselves. It achieves its goal by allowing sensor network applications to
specify their quality needs and subsequently making adjustments on specific properties of the sensor
network to meet these needs.
MiLAN supports data-driven applications that collect and perform an analysis of the data from the
environment. The quality of data is affected by noise, redundancy and the capabilities of the sensors
to detect this information. Furthermore, MiLAN also supports state-based applications which, being
of dynamic nature, change over time the specific needs on the quality of acquired data.
The three types of information used by MiLAN to perform adaptation are:

– Data about the QoS level defined by the application.

– Data about the overall performance of the system and about the user.

– Data about the sensor network, such as available resources, state of sensors, energy level and
channel bandwidth.

Using this information, MiLAN is able to adapt the configuration of the sensor network to optimize
the functionality of the system by proactively specifying which sensors need to send data and the
role each sensor should play in the overall scheme.

• Impala
Impala is a middleware system that was designed as part of the ZebraNet mobile sensor network
and its architecture allows for application modularity, adaptivity, and reparability in wireless sensor
networks [LM03].
Impala supports multiple applications by adopting an event-based modular programming model and
providing a friendly programming interface. It also features a lightweight system layer that performs
on-the-fly application adaptation based on parameters and device failures which allows to improve
the performance, reliability and energy-efficiency of the system. The modular application structure
is used to perform application updates in small, modular pieces over the radio, similar as in Contiki
and SOS. However, the system is implemented on devices similar to PDAs rather than simple sensor
nodes.
Impala adopts a layered approach in which the upper layer comprises the application protocols and
programs. The lower layers are composed of the following middleware agents:

– The application adapter, which performs adaptation on the application protocols at runtime to
adapt to the changing environmental conditions.

– The application updates, which receive and transmit updates using wireless technology in order
to install new code versions on a node.

– The event filter, which is responsible for capturing and dispatching the appropriate messages
to the other two layers.

Although Impala supports a certain degree of adaptation, it does not address the issue of hetero-
geneity which, in other middleware platforms, play a very important role.
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• TinyCubus
The overall architecture of TinyCubus [MLM+05, MMLR05] mirrors the requirements imposed by
the heterogenity of applications and the hardware they operate on. TinyCubus has been developed
with the goal of creating a generic reconfigurable framework for sensor networks.
TinyCubus is implemented on top of TinyOS [HSW+00] using the nesC programming language
[GLv+03], which allows for the definition of components that contain functionality and algorithms.
TinyOS is primarily used as a hardware abstraction layer. For TinyOS, TinyCubus is the only
application running in the system. All other applications register their requirements and components
with TinyCubus and are executed by the framework.
TinyCubus itself consists of three parts: the Tiny Cross-Layer Framework, the Tiny Configuration
Engine, and the Tiny Data Management Framework.

– Tiny Data Management Framework. The Tiny Data Management Framework provides a
set of data management and system components. For each type of standard data management
component such as replication/caching, prefetching/hoarding, aggregation, as well as each type
of system component, such as time synchronization and broadcast strategies, it is expected that
several implementations exist. The Tiny Data Management Framework is then responsible for
the selection of the appropriate implementation based on the current information contained in
the system.
The Tiny Data Management Framework contains a Cubus which combines optimization pa-
rameters, such as energy, communication latency or bandwidth; application requirements, such
as reliability or consistency level; and system parameters, such as mobility or network density.
For each component type, algorithms are classified according to these three dimensions. For
example, a tree-based routing algorithm is energy-efficient, but cannot be used in highly mobile
scenarios with high reliability requirements. The Tiny Data Management Framework selects the
best suited set of components based on current system parameters, application requirements,
and optimization parameters. This adaptation has to be performed throughout the lifetime of
the system and is a crucial part of the optimization process.

– Tiny Cross-Layer Framework. The Tiny Cross-Layer Framework provides a generic interface
to support the parametrization of components that use cross-layer interactions. Strict layering
is not practical for wireless sensor networks because it might not be possible then to apply
certain desirable optimizations. For example, if some of the application components as well as
the link layer component need information about the network neighborhood, this information
can be gathered by one of the components in the system and provided to all others. On
the other hand, cross-layer interactions can influence the desirable properties of the software
architecture, such as modularity, negatively. For example, if cross-layer interactions are not
applied in a controlled way, it might not be possible to exchange a module without major
changes to others. Therefore, in the Tiny Cross-Layer Framework a state repository is used to
store the cross-layer data of all components, i.e., the components do not interact directly with
each other. Thus, architectural properties are better preserved than with the unbridled use of
cross-layer interactions.
Other examples for cross-layer interactions are callbacks to higher-level functions, such as the
ones provided by the application developer. The Tiny Cross-Layer Framework also supports this
form of interaction. To deal with callbacks and dynamically loaded code, TinyCubus extends
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the functionality provided by TinyOS to allow for the dereferencing and resolution of interfaces
and components.

– Tiny Configuration Engine. In some cases parametrization, as provided by the Tiny Cross-
Layer Framework, is not enough. Installing new components, or swapping certain functions
is necessary, for example, when new functionality such as a new processing or aggregation
function for the sensed data is required by the application. The Tiny Configuration Engine
addresses this problem by distributing and installing code in the network. Its goal is to support
the efficient configuration of both system and application components with the assistance of
the topology manager.
The topology manager is responsible for the self-configuration of the network and the assign-
ment of specific roles to each node. A role defines the function of a node based on properties
such as hardware capabilities, network neighborhood, location, etc. The topology manager uses
a generic specification language and a distributed role assignment algorithm to assign roles to
the nodes.
Since in most cases the network is heterogeneous, the assignment of roles to nodes is extremely
important: only those nodes that actually need a component have to receive and install it. This
information can be used by the configuration engine, for example, to distribute code efficiently
in the network.

4.1.6 Summary and Evaluation

This section has presented the state of the art of system architectures for single nodes comprising operating
systems, virtual machines, data management middleware and adaptive system software. From the operating
system point of view, the dominant operating systems TinyOS, Contiki and Mantis include all functionality
required except for real-time support which has been addressed in recent operating systems such as Timber
and DCOS. While we believe that most functionality is available in today’s operating systems, the main
issue seems to be the programmability of these systems, which relates to the issues discussed in section 3.
Virtual machine code is more compact than native code which reduces the energy consumption when
sending code updates through the network compared to native code even when there is support for loadable
modules as in Contiki or SOS. However, code interpretation is more expensive using virtual machines. This
trade-off (which is apparently application-dependent) has not been evaluated thoroughly.
The view of a sensor network as a database might be good for an external user querying the network,
for an internal application this approach seems to be of high costs. Other Data Management Middleware
schemes are too application specific even if it includes several generic parts that are useful for many other
scenarios as well.
The need for adaptive system software is obvious and several approaches exist. While MiLan focuses on
the quality of the sensor data, Impala and TinyCubus deal with the optimization of the application itself.
Unfortunately, it is hard to model MiLan’s functionality in the other two systems.
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4.2 System Architecture: Interaction of Nodes

4.2.1 Introduction

In this section we focus on system architecture and topics related to cooperation among nodes. We can
roughly abstract two main set of functionalities defining how nodes interact:

1. Low-level functionalities, including tasks corresponding to physical, link, routing, and transport layers;

2. High-level functionalities, including coordination and support, clustering, timing and localization,
addressing, lookup, collaboration, failure detection, and security.

An approximate mapping of the above functionalities onto the traditional ISO/OSI protocol layers is shown
in Figure 4.

Figure 4: Approximate mapping of the interaction functionalities to ISO/OSI protocol layers.

This mapping shows a peculiarity of the sensor network, namely most of the functionalities extend over
and depend on several traditional protocol layers [ASSC02]. This is because sensor networks have to
provide functionalities that are not present in traditional networks. Furthermore, the efficiency constraints
imposed by sensor networks’ limited resources imply that any strictly layered approach, while possible, is
likely to produce suboptimal solutions. On the other hand, a complete monolithic approach is unlikely to
be manageable in complexity. Hence, a suitable level of integration has to be found.

4.2.2 Communication Models

Conceptually, communication within a sensor network can be classified into two categories [TAGH02]:
application and infrastructure. The network protocol must support both these types of communication.
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Application communication relates to the transfer of sensed data with the goal of informing the observer
about the phenomena. Within application communication, there are two models: cooperative and non-
cooperative. Under the cooperative sensor model, sensors communicate with other sensors to realize the
observer interest. This communication is beyond the relay function needed for routing. In-network data
processing is an example of co-operative sensors. Non-cooperative sensors do not cooperate for information
dissemination; the co-operation is strictly limited to packets relay in multi-hop networks. Infrastructure
communication refers to the communication needed to configure, maintain and optimize operation. More
specifically, because of the ad hoc nature of sensor networks, sensors must be able to discover paths to
other sensors of interest to them and have to be able to discover paths to the observer regardless of sensor
mobility or failure. Thus, infrastructure communication is needed to keep the network functional, ensure
robust operation in dynamic environments, as well as to optimize its overall performance. We note that
such infrastructure communication is highly influenced by the application interests since the network must
reconfigure itself to best satisfy these interests. As infrastructure communication represents the overhead
of the network operation, it is important to minimize this communication while ensuring that the network
can support efficient application communication. In sensor networks, an initial phase of infrastructure
communication is needed to set up the network. Furthermore, if the sensors are energy-constrained, there
will be additional communication for reconfiguration. Indeed the role of each node will be re-negotiated
on the basis of its remaining energy. For example the role of cluster head in clustered networks is typically
rotated in order to balance the energy consumption.
Similarly, if the sensors are mobile or the observer interests are dynamic, additional communication is
needed for path discovery/reconfiguration. For example, in a clustering protocol, infrastructure communi-
cation is required for the formation of clusters and cluster-head selection; under mobility or sensor failure,
this communication must be repeated (periodically or upon detecting failure). Finally, infrastructure com-
munication is used for network optimization. Consider the Frisbee model, where the set of active sensors
follows a moving phenomenon to optimize energy efficiency. In this case, the sensors wake up other sensors
in the network using infrastructure communication. Sensor networks require both application and infras-
tructure communication. The amount of required communication is highly influenced by the networking
protocol used. Application communication is optimized by reporting measurements at the minimal rate
that will satisfy the accuracy and delay requirements given known sensor capabilities and the quality of
the paths between the sensors and the observer. The infrastructure communication is generated by the
networking protocol in response to application requests or events in the network. Investing in infrastructure
communication can reduce application traffic and optimize overall network operation.

4.2.3 Network Dynamics

A sensor network forms a path between the phenomenon and the observer. The goal of ta sensor network
protocol is to create and maintain this path (or multiple paths) under dynamic conditions, by means of
interaction of nodes, while meeting the application requirements of low energy, low latency, high accuracy,
and fault tolerance.
The way in which these communication paths are established and maintained, and thus the way in which
nodes interact, strongly depends on the network dynamics. Network dynamics can be roughly classified
as: static sensor networks and mobile sensor networks.
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• Static Networks.
In static sensor networks, the communicating sensors, the observer and the phenomenon are all static.
An example is a group of sensors spread for temperature sensing. In this type of network, sensor
nodes require an initial set-up infrastructure communication to create the path between the observer
and the sensors with the remaining traffic mainly being for sake of application communication.
Re-configuration can still occur for task re-assignment or failures due to energy consumption.

• Dynamic Networks.
In dynamic sensor networks, either the sensors themselves, the observer, or the phenomenon are
mobile. Whenever any of the sensors associated with the current path from the observer to the
phenomenon moves, the path may fail. In this case, either the observer or the concerned sensor
must take the initiative to rebuild a new path. During initial set-up, the observer can build multiple
paths between itself and the phenomenon and cache them, choosing the one that is the most
beneficial at that time as the current path. If the path fails, another of the cached paths can be
used. If all the cached paths are invalid, then the observer must rebuild new paths. This observer-
initiated approach is a reactive approach, where path recovery action is only taken after observing
a broken path. Another model for rebuilding new paths from the observer to the phenomenon is a
sensor-initiated approach. In a sensor-initiated path recovery procedure, path recovery is initiated by
a sensor that is currently part of the logical path between the observer and the phenomenon and is
planning to move out of range. Dynamic sensor networks can be further classified by considering the
motion of the components. This motion is important from the communications perspective since
the degree and type of communication is dependent on network dynamics.

– Mobile observer. In this case the observer is mobile with respect to the sensors and phenom-
ena. For example, a plane might fly over a field periodically to collect information from a sensor
network. A model that is well-suited to this case is the Data Mules model [RCSB03]. The
MULE architecture provides wide-area connectivity for a sparse sensor network by exploiting
mobile agents such as people, animals, or vehicles moving in the environment. The system
architecture comprises of a three-tier layered abstraction.The top tier is composed of access
points/central repositories, which can be set up at convenient locations where network con-
nectivity and power are present. These devices communicate with a central data warehouse
that enables them to synchronize the data that they collect, detect duplicates, as well as return
acknowledgments to the MULEs. The intermediate layer of mobile MULE nodes provides the
system with scalability and flexibility for a relatively low cost. The key traits of a MULE are
large storage capacities (relative to sensors), renewable power, and the ability to communicate
with the sensors and networked access points. MULEs are assumed to be serendipitous agents
whose movements cannot be predicted in advance. However as a result of their motion, they
collect and store data from the sensors, as well as deliver acks back to the sensor nodes. In
addition, MULEs can communicate with each other to improve system performance. The bot-
tom tier of the network consists of randomly distributed wireless sensors. Work performed by
these sensor nodes should be minimized as they have the most constrained resources of any
of the tiers. Depending on the application and situation, a number of tiers in our three-tier
abstraction could be collapsed onto one device. As data MULEs perform the collection of
information to and from the sensor nodes when they are in the sensors radio range, sensor
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nodes can be very simple (they are only required to sense data and communicate them to the
data MULE when in range). This in turn may reduce complexity, thus cost, of sensor nodes,
enabling their adoption in very large scale systems. The price to pay in case a data MULEs-like
solution is adopted, is an energy-latency trade-off. Complexity is shifted from the sensor nodes
to the MULEs, the energy consumption is reduced as nodes only have to communicate the
data they generate, but communication may experience high latencies as sensors have to wait
for a MULE to pass by before the sensed data is communicated.

– Mobile sensors. In this case, the sensors are moving with respect to each other and the ob-
server. For example, consider traffic monitoring implemented by attaching sensors to veichles
[SSW+05]. If the sensors are co-operative, the communication paradigm imposes additional
constraints such as detecting the link layer addresses of the neighbors and constructing localiza-
tion and information dissemination structures. As sensor nodes are energy-constrained devices,
their mobility can be foreseen as the (often uncontrollable) mobility of the mobile devices they
are attached to (users, cars etc.)

– Mobile phenomena. In this case, the phenomenon itself is moving. A typical example of
this paradigm is sensors deployed for animal detection. In this case the infrastructure level
communication should be event-driven. Depending on the density of the phenomena, it will
be inefficient if all the sensor nodes are active all the time. Only the sensors in the vicinity
of the mobile phenomenon need to be active. The number of active sensors in the vicinity of
the phenomenon can be determined by application specific goals such as accuracy, latency, and
energy efficiency. A model that is well-suited to this case is the Frisbee model [CEE+01].

4.3 Architectures and Functionalities summary

In this section we sketch a general architecture design based on the considerations made in the above
sections. Furthermore we briefly discuss a set of functionalities to allow a flexible, but efficient interaction
among nodes to reach a common goal.
We can identify two main layers of abstraction: the sensor and networking layer, and the distributed
services layer.

• The sensor and networking layer is made of sensor nodes and network protocols. Ad-hoc routing
protocols allow messages to be forwarded through multiple sensor nodes taking into account the
mobility of nodes and the dynamic change of topology. Communication protocols must be energy-
efficient because of the limited energy and computational resources.

• The distributed services layer is made of distributed services for the mobile sensor applications.
Distributed services co-ordinate with each other to perform decentralized services. Resources might
be replicated for higher availability, efficiency and robustness. A Lookup Service supports mobility,
instantiation, and reconfiguration. Finally the Information Service deals with aspects of collecting
data. This service allows vast quantities of data to be easily and reliably accessed, manipulated,
disseminated, and used by applications.

Applications run on the top of this architecture and exploit the functionalities provided be the sensor and
networking layer and distributed services layer, see Figure 5.
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Figure 5: Architecture overview.

We can identify two distinct phases which bring the sensor network in a fully operational mode: The
initialization phase and the operation phase.

• Initialization phase.
When new sensor nodes are added to the sensor network, they should learn about the capabilities
and functions of other sensors and work together to perform co-operative tasks and networking
functionalities.
The initialization phase is further divided in the following phases:

– Discovery phase. In this phase nodes explore their environment and establish contact with
neighbors using ad-hoc networking techniques. The nodes perform a distributed coordination
protocol in order to find a suitable networking topology that allows all nodes to communicate.

– Synchronisation phase. In this phase nodes try to synchronise with neighboring nodes in
order to have some common notion of time. This is required for example to enable dynamic
power management strategies in networking and data processing protocols, to use TDMA-like
MAC protocols, to be able to identify the time at which events occur according to a common
reference time.

– Positioning phase. In this phase nodes try to find out their relative and possibly geographic
positions.

– Registration phase. In this phase, nodes can communicate and there is a common agreement
on time and position/topology. A node connects to the lookup service to register its presence,
its position, and its capabilities.
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– Configuration phase. In this phase the lookup service configures a sensor node or the node
configures itself to perform a specific task.

Once these phases are completed, the sensor network becomes operational. Sensors may move and
may be required to perform different tasks. This implies that some of the above-mentioned phases
would be performed again in re-configuration tasks.

• Operation phase.
Once the sensor network has been initialized, it will perform the tasks as specified in the initializa-
tion phase. Sensor nodes are organized in ad-hoc and highly dynamic networks. They must react
to mobility, changes in task assignment, and network and device failures. Therefore, each sensor
node must be autonomous and capable of organising itself in the community of sensors to perform
coordinated activities with global objectives. This is performed via self-organizing in possibly hierar-
chical structures, topology control protocols, protocols addressing and exploiting mobility in sensor
networks, dynamic routing protocols etc 6.

5 Conclusions and Future Work

This section presents summaries of the different parts of this study, namely for programming models and
system architectures in form of node internals and interaction of nodes. An overview of the corresponding
part is given followed by a discussion on identified trends and open issues.

5.1 Programming Models

In order to support the development, maintenance, deployment and execution of applications for Cooper-
ating Objects, an appropriate abstraction sitting between the operating system and the application itself
need to be provided to the programmer [RKM02]. In the last couple of years different approaches for the
design and development of such abstractions were presented in the research community and some of them
evolved to running systems, most of which where surveyed in Section 3.2.
Most of the discussed approaches were designed for a specific application scenario or were tailored to
some specific design goals and appear thus able to comply with only a subset of the requirements listed
in Section 3.1. We can also conclude that for complex systems like networks of Cooperating Objects, the
design a “unique” suitable programming abstraction, able to comply with the requirements and constraints
of the many envisioned application scenarios appears as an extremely challenging task.

Trends. Most of the surveyed programming paradigms (e.g., database approach, agent-based approach,
event-based approach) are not new, but required significant adaptation for being used for Cooperating
Objects. These approaches differ with respect to ease of use, expressiveness, scalability, overhead, etc., as
outlined in section 3.3. Some paradigms, like the database or the group-approaches, allow an easy way to
programming the network as a single (virtual) entity, but the definition and completion of more complex
tasks than just simple sensing is not yet appropriately supported by such approaches. Virtual machines, like

6An extensive survey of the different protocols proposed in the literature for performing such tasks has been reported
in WP3, task 3.1.2.
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Maté or MagnetOS give priority to energy-saving issues and are well suited for hiding device heterogeneity
to the programmer, but implicate cumbersome local code interpretation. The Generic Role Assignment and
the Virtual Market approaches are tailored to provide a general and easy-to-use framework for supporting
task assignment and device coordination in networks of Cooperating Objects and are still object of active
research.

Some open issues. Since most of the investigated programming abstraction are only partially able to
comply with the several requirements posed by complex systems like network of Cooperating Objects, we
believe that the research community should try to better understand which models and abstractions are
the most appropriate for the different classes of devices covered by the notion of Cooperating Objects.
More effort should also be put on the provision of easy-to-use programming primitives, since most systems
still require experienced programmers. Since future applications envision cooperation among devices which
may strongly differ in terms of dimension, power and computing resources, mobility, etc., we also recognize
the need of further research on paradigms that allow an easy and efficient programming of networks that
incorporate very heterogeneous devices. Scalability issues should also gain more attention, since it is
still unclear if the existing approach will be perform satisfactory for very large networks of Cooperating
Objects. Finally, we believe that the design and development of adequate tools for debugging at application
level should also be considered as a fundamental issue for the success of a programming abstraction for
Cooperating Objects.

5.2 Node Internals

The main tasks of operating systems for Cooperating Objects is to provide an abstract interface to the
underlying hardware and to schedule system resources. The main challenges are the small memory footprint
and limited energy budget of the nodes. Therefore, scaled-down versions of traditional operating systems
have been successful for larger devices such as IPAQs but not for extremely resource-constrained sensor
network nodes. For these nodes, operating systems from scratch have been developed and are in use.
Other abstractions for Cooperating Objects have been developed: Virtual Machines provide a high-level
programming language that allows to write complex programs with only a few commands. Data Manage-
ment Middleware offers a uniform view to the data gathered in a Cooperating Object and its processing,
storage, and distribution. Adaptive System Software frees the user from adjusting the application to every
possible system condition.

Trends. TinyOS is the dominant operating system for sensor networks. TinyOS ’ most outstanding
feature is its small memory footprint but it does not have support for loadable modules, its concurrency
model is based on events only and TinyOS is hard to program. Therefore, newer operating system such
as Contiki, Mantis and SOS have support for loadable modules and offer more sophisticated concurrency
models which slightly increases the memory footprint of the systems but simplifies OS and application
development. Fairly recent operating systems such as DCOS and Timber also address the aspect of
real-time support not found in the earlier, dominating operating systems.
Virtual Machines also allow for efficient code updates since virtual machine code is more compact than
native code which reduces the energy consumption when sending code updates through the network
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compared to native code even when there is support for loadable modules as in Contiki or SOS. However,
code interpretation is more expensive using virtual machines.
Virtual Machines, Data Management Middleware, and Adaptive System Software provide several different
abstractions and functionality that help to simplify the programming and operation of cooperating objects.
This is still a hot topic. Data Management Middleware first concentrated on database abstractions for
the whole network, but they could only be used from the outside. Currently, middleware for applications
with common characteristics (e.g., location tracking, real-time data services) are developped. Adaptive
systems also concentrated on one aspect at first, e.g. to ensure the quality of the sensor readings. This is
currently extended to other algorithms, and finally the whole system is to be adapted.

Some open issues. Real-time aspects will become more important in sensor networks in the future.
While there have been some efforts, real-time operating systems for sensor networks can still be seen as
an open issue.
While we believe that most functionality is available in today’s operating system, the main issue seems to
be the programmability of these systems, in particular for highly optimized systems such as TinyOS and
Contiki. Abstractions such as Protothreads found in the Contiki OS are a step in the right direction, but
more work needs to be done as also pointed out above in the discussion on programming models.
The support by Data Management Middleware are another step, but either the approaches are not usable
inside the network of objects, or they are too application specific and, thus, not interoperable. Therefore,
a general concept for the basic functionality of such a middleware is clearly needed.
Since code updates are essential for Cooperating Objects with long-term installations, every system will
support updates in the future. For Virtual Machines, updates are most simple since the script or byte-code
to interpret can be loaded from every place. For this reason, all of the VMs mentioned have this capability.
Updates are more difficult for native code, since function calls and variable access have to be performed
at a low-level. Either the user is willing to accept overhead for indirections, or the new code has to be
fully integrated into the existing code. No general solutions exist here.
With Virtual Machines, Data Management Middleware, and Adaptive System Software, several approaches
exist that abstract from different parts of a Cooperating Object. It has not been studied yet if and how
these approaches can be combined to a single overall framework for Cooperating Objects.
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[FR05] Christian Frank and Kay Römer. Algorithms for Generic Role Assignment in Wireless Sen-
sor Networks. In Proceedings of the 3rd ACM Conference on Embedded Networked Sensor
Systems (SenSys), San Diego, CA, USA, November 2005. To appear.

[GLv+03] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. The nesC language:
A holistic approach to networked embedded systems. In Proceedings of the ACM SIGPLAN
2003 conference on Programming language design and implementation, pages 1–11, San
Diego, California, USA, 2003.

[HMCP04] W. B. Heinzelman, A. L. Murphy, H. S. Carvalho, and M. A. Perillo. Middleware to Support
Sensor Network Applications. IEEE Network, pages 6–14, January 2004.

[HRS+05] C. Han, R. Rengaswamy, R. Shea, E. Kohler, and M. Srivastava. SOS: A dynamic operating
system for sensor networks. In MobiSys 2005, Seattle, USA, June 2005.

[HSW+00] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System Architecture
Directions for Networked Sensors. In ASPLOS 2000, Cambridge, USA, November 2000.

[iri] IrisNet: Internet-scale Resource-Intensive Sensor Network Service.

[JVE+04] J. Johansson, M. Völker, J. Eliasson, Å. Östmark, P. Lindgren, and J. Delsing. Mulle: A
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