
Embedded WiSeNts

IST-004400

Research Integration: Platform Survey
Critical evaluation of platforms commonly used in embedded

wisents research

EW Identifier: EW-T21/D01-SICS-001-01
Date: 2006-06-01

Author(s) and
company:

Can Basaran (YTU), Sebnem Baydere (YTU), Giancarlo
Bongiovanni (CINI), Adam Dunkels (SICS), M. Onur Er-
gin (YTU), Laura Marie Feeney (SICS, editor), Isa Ha-
cioglu (YTU), Vlado Handziski (TUB), Andreas Köpke
(TUB), Maria Lijding (UT), Gaia Maselli (CINI), Nir-
vana Meratnia (UT), Chiara Petrioli (CINI), Silvia San-
tini (ETHZ), Lodewijk van Hoesel (UT), Thiemo Voigt
(SICS), Andrea Zanella (DEI)

Work package/task: WP 2 / T 1
Document status: final

Confidentiality: public
Keywords: sensor network, research platform, hardware, operating

system, tools, development environment, testbed
Abstract: Critical survey of research platforms for sensor networks,

with an emphasis on hands-on experience.

Embedded WiSeNts Research Integration: Platform Survey

DOCUMENT HISTORY
Version Date Reason of change

1 2006-01-23 document created
2 2006-06-01 task completed

c©Embedded WiSeNts consortium: all rights reserved page 2

Embedded WiSeNts Research Integration: Platform Survey

Table of Contents

1 Executive Summary .7

2 Introduction .8
2.1 Content and scope . 9

3 WSN platforms . 11
3.1 Overview and comparison . 12
3.2 ESB/2 . 12

3.2.1 MCU . 13
3.2.2 Radio Transceiver . 15
3.2.3 Storage . 16
3.2.4 Memory . 16
3.2.5 Sensors . 16
3.2.6 Energy Storage . 17
3.2.7 External Interfaces . 17
3.2.8 Packaging . 17
3.2.9 Availability . 17
3.2.10 Support . 17
3.2.11 Experiences with the ESB platform . 18

3.3 Tmote Sky . 19
3.3.1 MCU . 19
3.3.2 Radio Transceiver . 19
3.3.3 External Storage . 19
3.3.4 Sensors . 19
3.3.5 Energy Storage . 19
3.3.6 External Interfaces . 21
3.3.7 Packaging . 22
3.3.8 Availability . 22
3.3.9 Support . 22
3.3.10 Experiences with the TMote sky platform . 23

3.4 BTnode . 24
3.4.1 Introduction . 24
3.4.2 Microcontroller . 25
3.4.3 Radio Transceivers . 25
3.4.4 Storage . 25
3.4.5 Sensors and Actuators . 26
3.4.6 Power Supply . 27
3.4.7 External Interfaces . 27
3.4.8 Packaging . 27
3.4.9 Availability . 28

c©Embedded WiSeNts consortium: all rights reserved page 3

Embedded WiSeNts Research Integration: Platform Survey

3.4.10 Support . 28
3.4.11 Experiences with the BTnode platform . 28

3.5 Ambient platforms: µNode and SmartTag . 32
3.5.1 SmartTags . 35
3.5.2 User experience with µNode and SmartTag . 35

3.6 EYES . 40
3.6.1 Overview . 40
3.6.2 MCU . 41
3.6.3 Radio Transceiver . 41
3.6.4 Sensors . 41
3.6.5 Energy Storage . 42
3.6.6 External Interfaces . 42
3.6.7 Packaging . 42
3.6.8 Availability . 42
3.6.9 Support . 42
3.6.10 Experiences with the EYES platform . 42

3.7 Microcontroller: TI MSP430F1611 . 44

4 Operating systems . 46
4.1 TinyOS 1.x . 47

4.1.1 Component-based modularization . 47
4.1.2 Concurrency model . 47
4.1.3 Split-phase operations . 48
4.1.4 Static program analysis . 48
4.1.5 Hardware abstraction . 49
4.1.6 Networking services . 50
4.1.7 Toolchain and PC-side tools . 51
4.1.8 Licensing model, community support and documentation 51

4.2 TinyOS 2.0 . 52
4.2.1 Portability . 52
4.2.2 Robustness and reliability . 52
4.2.3 Toolchain and PC-side tools . 53
4.2.4 Development model . 53

4.3 Contiki . 54
4.3.1 Basic features and design philosophy . 54
4.3.2 Concurrency models . 54
4.3.3 Basic OS Services . 56
4.3.4 Service support . 58
4.3.5 Programming Environments . 58
4.3.6 Testing and Debugging Tools . 58
4.3.7 Support . 59
4.3.8 Experience . 59

4.4 BTnut . 60
4.4.1 BTnut Core Functions . 60

c©Embedded WiSeNts consortium: all rights reserved page 4

Embedded WiSeNts Research Integration: Platform Survey

4.4.2 Basic OS Services . 61
4.4.3 Service support . 63
4.4.4 Programming Environments . 63
4.4.5 Support . 64
4.4.6 Experiences with the BTnut System Software . 64

4.5 AmbientRT . 65
4.5.1 Real-time Scheduler . 65
4.5.2 Concurrency Model . 65
4.5.3 Resource Synchronization . 67
4.5.4 Real-time guarantees . 68
4.5.5 Data centric architecture . 69
4.5.6 Dynamic Loadable Modules . 69
4.5.7 Hardware Abstraction . 70
4.5.8 Command Shell . 70
4.5.9 Licensing model, community support and documentation 70

5 Service distributions .71
5.1 Communication stacks . 71

5.1.1 LMAC protocol . 71
5.1.2 uIP TCP/IP . 72

5.2 Sensor Querying Tools . 75
5.2.1 Publish/Subscribe Abstraction . 75
5.2.2 TinyDB . 76
5.2.3 Acquire . 77
5.2.4 Cougar . 77
5.2.5 SQS . 77

5.3 Reprogramming . 80
5.3.1 Reprogramming Scenarios . 80
5.3.2 Code Execution Models and Reprogramming . 80

6 Simulation/Emulation environments .82
6.1 Tossim . 83

6.1.1 Advantages . 83
6.1.2 Disadvantages . 84

6.2 Glomosim . 85
6.2.1 Advantages . 85
6.2.2 Disadvantages . 85

6.3 Matlab . 86
6.3.1 Advantages . 86
6.3.2 Disdvantages . 87

6.4 Avrora . 88
6.4.1 Advantages . 88
6.4.2 Disadvantages . 88

6.5 OMNeT++ simulator . 89

c©Embedded WiSeNts consortium: all rights reserved page 5

Embedded WiSeNts Research Integration: Platform Survey

6.5.1 Advantages . 90
6.5.2 Disadvantages . 90
6.5.3 Mobility Framework . 90
6.5.4 NesCT . 91
6.5.5 WSN simulation template . 91

6.6 Network Simulator 2 (ns2) . 92
6.7 On the accuracy of simluation environments . 94

7 Testbeds . 95
7.1 DEI Testbed . 95

7.1.1 Description . 95
7.1.2 Discussion . 95

7.2 TWIST Testbed Architecture . 98
7.2.1 TWIST Instance at the TKN Building . 99

7.3 ETHZ Testbed . 101
7.4 YTU Testbed . 103

7.4.1 Description . 103
7.5 SICS Testbed . 103

7.5.1 Description . 103
7.5.2 Discussion . 103

8 Conclusions . 104

c©Embedded WiSeNts consortium: all rights reserved page 6

Embedded WiSeNts Research Integration: Platform Survey

Hardware Operating systems Simulators
ESB/2 TinyOS 1.x, 2.0 Tossim
Tmote Sky Contiki Glomosim
BTnode BTnut Matlab
µNode AmbientRT Avrora
EYES Omnet++

Ns2

Table 1: Contents

1 Executive Summary

This report presents an in-depth critical survey of a number of advanced research platforms for wireless
sensor networks. The goal of our work has been to evaluate these platforms with respect to their practical
capabilities as research platforms, focusing on ease of use issues. For this purpose, we have limited the
selection of platforms to those with which Wisent partners have substantial hands-on experience.

The information presented here is intended to inform researchers’ selection of a platform and to increase
awareness of the variety of available research environments. By contributing to the development diverse
communities using these platforms, this report contributes to increased integration within the research
community.

The content includes presentation of five hardware platforms and four operating systems. In addition, the
document presents a number of “service distributions”: software packages providing portable functionality
for the communication stack, sensor data processing, and network management. A survey of six simulation
environments is also presented. Finally, descriptions of four testbed and development environments show
how these platforms are being used in practice.

The report closes with some brief discussion of implications of the survey.

This information is provided for guidance only. Although the authors have tried to ensure that the
material was accurate at time of publication, no responsibility can be taken for the accuracy of the
contents, particularly with regards to features and prices of commercially available systems. It should be
emphasized that no information in this document is intended as an endorsement or recommendation of any
particular platform by any of the authors, their respective institutions, or by any sponsoring organization.

c©Embedded WiSeNts consortium: all rights reserved page 7

Embedded WiSeNts Research Integration: Platform Survey

2 Introduction

This report presents a critical survey of a number of advanced research platforms – hardware and software
– for wireless sensor networks. The report evaluates these platforms with respect to their practical func-
tionality as research platforms, focusing on issues related to using these platforms for research activities in
various contexts. 1

The primary contribution of this document are its focus on practical usage issues and its insight into
hands-on experience working with these platforms – content which the authors are uniquely qualified to
provide. In this regard, this approach may be contrasted with work such as [Beu05], which explores the
feature space defined by various platforms. Although this report provides extensive information about
the features available on each platform, we focus on the less easily quantified, but absolutely essential,
efficiency of the design-download-debug cycle.

Because of the focus on practical experience, a theme that recurs frequently is this document is ’ease of
use’: ease of programming, debugging, and deploying robust applications. Ease of use is essential factor
to the eventual success of any research platform; otherwise its use will limited to trivial scenarios.

A second, related, factor that is crucial to the development of an effective research platform is the
development of a user community . Meeting the needs of a diverse group of researchers ensures that the
platform provides complete and easy-to-use functionality. Moreover, the understanding of both shared
and diverging requirements informs the design of effective abstraction layers and API’s. Such collective
experience is the essential technical basis for meaningful and useful standards and system integration
practice.

The report is not intended to present technical concepts or to assess the research contribution associ-
ated with the development of the various platforms. (Such information is found in other Wisent project
documents [BO06, ZO06, PO06, SO06], as well as in the literature.)

Nor is the report intended to determine a “best” research platform. There is surprisingly large variation
among the platforms examined here, suggesting that there is a particularly broad design space. It is not
possible, given the extraordinary range of both application requirements and of potential deployment en-
vironments, to indicate a unique platform that can comply with the requirements of such a broad variety
of researchers. Different research goals require different functionality from the underlying platform. For
example, a researcher developing new MAC layer requires a platform that allows her to access and modify
a platform’s lowest layer communication functionality. By contrast, a researcher developing query man-
agement mechanisms may be better served by a platform that provides a clear high-layer communication
API.

The authors hope that making information about various platforms available in an accessible format
will assist researchers working in this area to appreciate the diversity of platforms available to them and
to help them select the most appropriate platform for their purposes.

1The authors emphasize that this information is provided for guidance only. Although the authors have tried to ensure
that the material was accurate at time of publication, no responsibility can be taken for the accuracy of the contents,
particularly with regards to features and prices of commercially provided systems. It should be emphasized that no
information in this document is intended as an endorsement or recommendation of any particular platform by any
of the authors, their respective institutions, or by any funding organization.

c©Embedded WiSeNts consortium: all rights reserved page 8

Embedded WiSeNts Research Integration: Platform Survey

2.1 Content and scope

The report provides both a catalog of features and, more importantly, the authors’ collective experience
in using these systems as research platforms. Each section is a combination of both tabulated data and
discussion. It should be noted that due to the significant differences among the various platforms, a
uniform side-by-side comparison is not possible. A limited summary comparison is provided, however.

The report covers five key areas:

• sensor hardware platforms

• operating systems

• service software distributions

• simulation and emulation environments

• testbeds

In general, each section contains a table summarizing the platform features (as specified by manu-
facturer), an (objective) structured discussion of the platform characteristics, and a (subjective) open
discussion of the user experience with that platform.

Because of its emphasis on platforms with which the authors have hands-on experience, the report
focuses on a relatively small number of platforms. The main hardware/OS platforms addressed in this
report are:

• BTnodes (NutOS and TinyOS)

• ESB/2 nodes (Contiki and TinyOS)

• µnodes (AmbientRT and TinyOS)

• SmartTags (no OS)

• EYES node (TinyOS)

• TmoteSky (Contiki and TinyOS)

In addition to the underlying platforms, the report also presents some widely used software service
distributions that operate at higher layers or are relatively independent of a particular platform are also
presented. These include communication protocols, sensor querying services and management tools:

• LMAC MAC layer

• uIP TCP/IP stack (multiple platforms)

• query mechanisms such as TinyDB, Cougar, and Acquire

• publish/subscribe abstractions

c©Embedded WiSeNts consortium: all rights reserved page 9

Embedded WiSeNts Research Integration: Platform Survey

• management mechanisms for reprogramming a network

The practical complexities of building sensor networks make simulation and emulation techniques are im-
portant research tools. Because such environments have only limited fidelity, it is important to understand
the limitations of such tools.

Several simulation/emulation environments are presented, including:

• Tossim

• Glomosim

• Matlab

• Avrora

• Omnet++

• ns-2

c©Embedded WiSeNts consortium: all rights reserved page 10

Embedded WiSeNts Research Integration: Platform Survey

3 WSN platforms

The first topic of investigation is the sensor hardware platform.
A brief overview table broadly comparing various platforms is presented first. It should be emphasized

that this table presents only a broad comparison, as fields do not necessarily represent identical features.
The description and discussion of each platform is more important. The structured description of each
platform is followed by a subjective discussion of experiences using that platform. The selected platforms
are:

• BTnodes (NutOS and TinyOS)

• ESB/2 nodes (Contiki and TinyOS)

• µnodes (AmbientRT and TinyOS)

• SmartTags (no OS)

• EYES node (TinyOS)

• TmoteSky (Contiki and TinyOS)

All of the above systems are intended as general purpose platforms to which a variety of sensor modules
can be attached 2. They can therefore be used as a basis for developing higher layer software and service
distributions, as well as to build testbeds and specialized applications.

The basic features listed below were assessed as essential by the authors. The basic features under
consideration are:

• Introduction/Overview

• MCU

• Radio Transciever(s)

• Storage

• Sensors

• Energy Storage

• External Interfaces

• Packaging

• Availability

• Support

This objective presentation of the features and functionality available in each H/W platform is followed
by a discussion of the users’ subjective experience with the platform.

2Some platforms, especially the ESB/2, have a number of simple on-board sensors.

c©Embedded WiSeNts consortium: all rights reserved page 11

Embedded WiSeNts Research Integration: Platform Survey

company name price price price order
URL (kit) (node) (gateway) online
ScatterWeb GmbH ESB ∼970 D ∼89–149 D ∼129–199 D yes
www.scatterweb.com 4 ESB + gateway
Infineon EyesIFX ∼300 D ∼70 D – No
www.infineon.com 5 EyesIFXv2.0

BTNode ∼520D ∼165D – –
www.art-of-technology.ch 2 BTnode + s/w
Ambient Systems BV µNode – ∼80D – –
www.ambient-systems.net
MoteIV TmoteSky ∼790$ ∼130$ ∼150$ yes
www.moteiv.com 10 motes only

Table 2: Cost and availability for hardware (not including sensors)

3.1 Overview and comparison

The cost data in table 2 is intended only as broad guidance and tends to suggest that there is a common
price point roughly in the 100D/unit range, making an experimental set up relatively affordable. In
particular, we note that the cost of time and effort establishing an experimental set up is a significant
factor in the total cost, and emphasizes the importance of ease of use issues. (It is also worth commenting
that, in real scenarios, the cost of some application-specific sensors may well outweigh the cost of the
hardware platform itself.)

Table 2 indicates prices and availability for various hardware platforms. 3 In most cases, the hardware
platform is provided without sensors. Some ESB hardware models include a variety of simple built-
in sensors, which is particularly convenient for educational systems. Sensor kits, including with basic
sensors are available for all of the various platforms and usually cost in the range ∼50D- ∼150D. Many
manufacturers sell a “starter” kit. This usually includes several nodes, gateway nodes and/or sensors,
various connectors and cables, software and documentation.

The overview comparison, table 3 below, provides a indication of the general breadth of hardware
platforms (for a broader investigation of the design space, see e.g. [Beu05]). Unless there is a requirement
for a particular hardware feature, however, the development and debugging environment is more likely to
dominate the selection of a platform.

3.2 ESB/2

The ESB (Embedded Sensor Board) is an MSP430x149-based wireless sensor network prototype board
that is equipped with a TR1001 radio transceiver and set of on-board sensors: a passive IR (PIR) sensor
for motion detection, an IR receiver that can be used to control an ESB with a regular remote control, an
IR transmitter, a temperature sensor, a tilt/vibration sensor, and a sound sensor. There are a number of
external connectors, including an RS232 serial connector and a JTAG connector. The RS232 line can be
used to communicate between an ESB and a PC and the JTAG connector is used for reprogramming the
MSP430 flash ROM. Additionally, there are a number of processor lines that are connected to external

3Disclaimer: This information is provided for guidance only.

c©Embedded WiSeNts consortium: all rights reserved page 12

Embedded WiSeNts Research Integration: Platform Survey

platform processor speed memory transceiver kbps
ESB/2 MSP430 1 MHz 2 KB + 60 KB TR 1001 115.2 kbps
TmoteSky MSP430 1 MHz 10 KB + 48 KB CC 2420 250 kbps

(IEEE 802.15.4)
BTnode ATmega 8 MHz 4 KB + 128 KB CC 1000 76.8kbps

and
Bluetooth kbps

µNode MSP430 1 MHz 10 KB + 48 KB – 50 kbps
EYES MSP 430 1 MHz 10 KB + 48 KB TDA5250 64 kbps

Table 3: Overview hardware comparison (where applicable, value shown is the maximum of possibly
several choices (e.g. processor speed).

connectors that can be used to extend the functionality of the ESB by, e.g., new sensors or communication
chips.

The ESB was originally was developed at the Free University of Berlin but its continued development is
carried out by the spin-off company Scatterweb [Sca]. Many of the original developers from Free University
of Berlin are now working at Scatterweb.

Figure 1: ESB/2 node

3.2.1 MCU

The ESB is equipped with a MSP430 microcontroller.

c©Embedded WiSeNts consortium: all rights reserved page 13

Embedded WiSeNts Research Integration: Platform Survey

Processor: TI MSP430F149

speed features
up to 1MHz
Memory
RAM ROM cache other
2 KB 60 KB n/a 32 KB EEPROM
Power
modes sleep MCU sensor all
4 modes 8 µA 280 µA – 12 mA

Power

input battery capacity external power
3 V 3 AAA XXX XXX
charge time lifetime other
XXX XXX capacitor

Tranceiver(s): TR1001

PHY MAC freq antenna(s)
ASK,OOK n/a 868MHz cable
power control range bitrate(s)

100 levels up to 300m outdoor up to 115.2 kbps
up to 100m indoor XXX

power consumption
sleep idle xmit rcv
5 µA XXX 7-8 mA 7-8 mA

Sensors

builtin PIR, infrared, temp., tilt, mic
available I/Os available
interfaces RS232, JTAG

Table 4: At a glance: Platform ESB2

c©Embedded WiSeNts consortium: all rights reserved page 14

Embedded WiSeNts Research Integration: Platform Survey

External interfaces

Programming JTAG
Debugging JTAG
Data RS 232
ADC/DAC interfaces n/a

Form factor

dimensions packaging environmental
issues

60x50x40mm standard XXX

Support and community

commercial manual tutorials other
yes yes no mails answered

quickly
mailing user

users web list forum
100 (est) yes yes no

Table 4: At a glance: Platform ESB2 (con’t)

Features The flash ROM can be rewritten either by using the JTAG connector, or by a program running
on the MSP430.

Memory The on-board MSP430 microcontroller is equipped with 2k RAM and 60k flash ROM.

3.2.2 Radio Transceiver

The ESB is equipped with a TR1001 transceiver that is connected to on of the UARTs of the MSP430.
Programs running on the MSP430 read and write individual bytes to the radio transceiver via the UARTs.
Bytes written through the UART are immediately sent over the radio.

Because of the low-level interface of the transceiver, the entire radio protocol must be implemented
in software running on the microcontroller. This has several implications. First, since every developer
may implement their own radio protocol, different ESB implementations may not be able to communicate
with each other despite them being equipped with the same radio transceiver. Second, the complexity of
the code required to implement a low-level radio protocol is high which leads to code which may contain
several bugs and that is difficult to debug.

The TR1001 can send data in one of two modes: Amplitude Shift Keying (ASK) and On-Off Keying
(OOK). With OOK, a digital one is encoded as a high output transmit power and a digital zero is encoded
as zero output transmit power. In contrast, in ASK mode a digital zero is encoded as a low output transmit
power.

c©Embedded WiSeNts consortium: all rights reserved page 15

Embedded WiSeNts Research Integration: Platform Survey

The range of the radio is determined by both external factors (the radio transmission environment)
and internal factors (the speed of the UART and the encoding used by the radio protocol implemented
in software). It is possible to do error-free transmissions that reach several hundred meters outdoors, at
free-sight environments. The indoor range is significantly lower, and is typically shorter than a hundred
meters.

The TR1001 measures the received signal strength and provides it on one of the output pins of the
TR1001. On the ESB, this is connected to one of the A/D converters which makes it possible to obtain
the current received signal strength using software.

3.2.3 Storage

The ESB has a 32 kilobyte large serial EEPROM that can be read from and written to by programs running
on the microcontroller.

3.2.4 Memory

The on-board MSP430 microcontroller is equipped with 2k RAM and 60k flash ROM.

3.2.5 Sensors

PIR sensor The Passive IR (PIR) sensor is used to detect human movement in front of the sensor. It
has a range of a few meters and a detection angle of 60 degrees.

When movement is detected, a digital signal is transmitted to the microcontroller. While it is possible
to steer the output of the PIR sensor to an analog input of the microcontroller, the output from the
PIR sensor is strictly digital and it is not possible to obtain any additional information regarding e.g. the
intensity of the movement from the analog output. Instead, the number of digital indications of movement
per time unit can be used to assess the amount of movement in front of the sensor.

IP receiver While the chief purpose of the IR receiver is to receive IR communication from either another
ESB (through the use of the on-board IR transmitted) or from a standard remote control, the IR receiver
can also be used to detect visible light. The information obtained from this can be used to infer if the
ESB is located indoors, where the ambient light flickers with a frequency of 50 Hz, or outdoors, where the
ambient sunlight does not flicker.

Tilt/vibration sensor The tilt/vibration sensor can detect a movement of the ESB. It transmits a digital
signal to the microcontroller when vibrations are detected. The amplitude of the movement can be inferred
by the number of signals received over a period of time.

Sound sensor The sound sensor is connected to an analog input of the microcontroller through which
it is possible to sample nearby sounds. While the sound sensor is good enough to record speech, its main
use is to detect other types of noise such as loud clicks or explosions.

Temperature sensor The temperature sensor is integrated with the MSP430 microcontroller.

c©Embedded WiSeNts consortium: all rights reserved page 16

Embedded WiSeNts Research Integration: Platform Survey

Extensibility There are a number of microcontroller input lines routed to external connectors on the
ESB/2. These can be used to add additional sensors or for adding new communication chips.

3.2.6 Energy Storage

Battery The ESB is equipped with a battery pack containing three AAA (1.5 V) batteries.

External Power-Supply Interfaces The ESB provides a connector for external power-supply that can
be used to power the ESB with, e.g., an external mains-connected voltage generator, a solar panel, or a
high-power capacitor [RSV+05].

3.2.7 External Interfaces

Debug/Programming The ESB has an on-board JTAG connector that is used for reprogramming the
MSP430 on-chip flash ROM and for debugging software running on the microcontroller. The JTAG
connector typically is connected to the parallel port of a PC on which the reprogramming and debugging
software is run.

Data Buses An RS232 connector is connected to one of the MSP430 UARTs. This is the primary way
to communicate between an ESB an a PC; an RS232 serial link is connected to the RS232 interface of
the ESB and a serial port of the PC.

3.2.8 Packaging

Dimensions The dimensions of the ESB, including the battery pack, is 60x50x40 mm.

Materials The ESB appears to be made out of standard electronics materials.

Environmental Safety Issues The status of any environmental issues is unknown.

3.2.9 Availability

Developer/Manufacturer The ESBs are available from Scatterweb [Sca].

Cost Each ESB device costs approximately 150 Euro.

3.2.10 Support

Documentation All connections between the microcontroller and the sensors are documented by Scat-
terweb. Documentation for the microcontroller, sensors, and the radio transceiver are available from their
respective manufacturers.

Community A mailing-list for users of the Scatterweb software exists. The list has a few mails per
month, but questions are promptly answered from Scatterweb developers.

c©Embedded WiSeNts consortium: all rights reserved page 17

Embedded WiSeNts Research Integration: Platform Survey

3.2.11 Experiences with the ESB platform

General. There are several operating systems for the ESB. Scatterweb themselves have a while-loop OS
from FU Berlin, and the ESB are one of the main platforms for SICS Contiki operating system. FU Berlin
have also ported TinyOS to the ESB nodes.

Processing and Memory. The 2 kilobyte RAM of the ESB can often be very challenging and the
developer has to keep track of the memory used by the applications to make sure that it does not over-
utilize the ESB RAM.

Sensing/Actuating Capabilities. At SICS, we have used most of the sensors, in particular the vibration
and PIR sensors are very useful for intrusion detection sensor network settings.

Communication. The radio has quite a long range; 200-300 meters outside in temperatures below zero
and more than 50 meters inside. However, the packet loss/bit error rates with the simple TR 1001 radio
are quite high.

Energy. Besides battery, the ESB nodes can be powered by solar cells or high-capacity capacitors. The
batteries are three standard AAA batteries. While we in the beginning when we had only a few nodes
used rechargable accumulators, we are now using batteries since it avoids the hassle of keeping track of
the accumulator’s status. Further, the batteries power the ESB nodes for a reasonably long time, usually
several months for the ones used quite often (when the radio is turned off most of the time). High-
capacity capacitors such as GoldCaps are useful for comparing the energy-efficiency of e.g. communication
protocols, since they power the nodes for a short time only, about one hour with a non-negligible duty
cycle.

Platform specific development experience. Since the ESB has an on-board JTAG connector, repro-
gramming the flash ROM is straightforward: the ESB is connected to the parallel port of a PC with a
special cable and the flash is rewritten. When using the Contiki OS, it is also possible to reprogram any
number of ESB boards remotely over the radio.

We have found that some the ESB boards can physically fall apart after long time handling. Usually
the plastic protector lens of PIR detector falls off from the board after a while. That said, we also have
experience with ESB boards quite robust. During one field trial where we deployed ESB boards throughout
a military training area, several ESB boards were deployed in a room where they were exposed to the blasts
of a number of training hand grenade explosions. The ESB boards, running Contiki, were able to detect
the explosions using the PIR and vibration sensors and to transmit the information back to the base station
placed in the basement of the building in which the military exercise took place. After the exercise all ESB
boards were found to be intact.

Support. There is a mailing list for the ESB board where questions typically are answered within a day.
Scatterweb provides several support and management tools.

c©Embedded WiSeNts consortium: all rights reserved page 18

Embedded WiSeNts Research Integration: Platform Survey

3.3 Tmote Sky

The Tmote Sky is a general purpose WSN platform with a large market share both in academia and
industry. It is the successor of the popular TelosA and TelosB research platforms from UC Berkeley.
Tmote Sky is one of the few FCC Certified WSN platforms available on the market, making it particularly
suitable for OEM integration. Thanks to the ultra-low-power microcontroller and the electrically buffered
external components that can be switched-off when not in use, the platform achieves very low quiescent
currents in the sleep mode, and very fast wake-up times.

3.3.1 MCU

The Tmote Sky is equipped with a MSP430F1611 microcontroller from the TI MSP430 family of ultra-
low-power 16-bit microcontrollers. The MSP430 family comes with a AD converters, ports, uart, SPI, I2C
buses. On the Tmote much of this can easily be connected to external devices.

Memory The on-board microcontroller offers 10k byte RAM and 48k byte flash programmable ROM.
The board also comes with 1M byte of external flash memory connected to the SPI bus.

3.3.2 Radio Transceiver

The Tmote Sky is equipped with CC2420, an IEEE 802.15.4 compliant radio transceiver from Chip-
con/Texas Instruments. The transceiver is connected to an internal inverted-F antenna giving it about
50 m of useful communication range when used indoors, and upwards of 125 m outdoors. The maximum
effective RF output power of the platform is about -7 dBm.

3.3.3 External Storage

The Tmote Sky has a 1 MB serial flash, M25P80, that can be read and written by the MSP430. Tmote
Sky provides hardware based write protection to parts of the flash that is disabled only when the module
is powered via the USB interface (see below). This enables storing a protected factory image which can
not be erased/modified during normal node operations. The Tmote Sky arrives with one such “Golden
Image” in sector 15 of the flash containing support for network reprogramming using the TinyOS Deluge
protocol.

3.3.4 Sensors

In addition to the internal temperature sensor of the MSP430 microcontroller, the Tmote Sky board has
predefined positions for mounting a humidity/temperature sensor from Sensirion AG (models SHT11 and
SHT15 are supported), as well as for light sensors like the Hamamatsu Corporation S1087 for sensing
photosensitive solar radiation or the S1087-01 for total spectrum measurements.

3.3.5 Energy Storage

Battery The Tmote Sky is powered by two AA size (1.5 V) batteries affixed in a standard battery pack.
The operating range of the platform when on battery power is from 2.1 to 3.6 V, with 2.7 V needed for

c©Embedded WiSeNts consortium: all rights reserved page 19

Embedded WiSeNts Research Integration: Platform Survey

Processor: TI MSP430F149

speed features
up to 1MHz
Memory
RAM ROM cache other
10 KB 48 KB n/a 1M ext. flash
Power
modes standby idle MCU all
– 5.1 µA 54.5 µA 1.8-2.4 mA –

Power

input battery capacity external power
21.-3.6 V 2 AA XXX XXX
charge time lifetime other
XXX XXX USB power

Tranceiver(s): CC2420

PHY MAC freq antenna(s)
IEEE 802.15.4 2.4 GHz internal inv-F

power control range bitrate(s)
> 125m outdoor 250kbps
∼ 50 indoor 250kbps

power consumption
sleep idle xmit rcv
20 µA 365 µA 17.4 mA 19.7 mA

Sensors

builtin
available light, temperature/humidty
interfaces USB serial, upto 6 ADC channels, up to 6 general i/o

Table 5: At a glance: Platform Tmote Sky

c©Embedded WiSeNts consortium: all rights reserved page 20

Embedded WiSeNts Research Integration: Platform Survey

External interfaces

Programming USB, JTAG
Debugging JTAG
Data 10 pin and 6 pin expansion connector, I2C
ADC/DAC interfaces up to 6 ADC channel

Form factor

dimensions packaging environmental
issues

32x66x7mm standard n/a

Support and community

commercial manual tutorials other
yes yes no –

mailing user
users web list forum
largest yes yes Wiki-based
community

Table 5: At a glance: Platform Tmote Sky (con’t)

internal and external flash reprogramming.

External Power-Supply Interfaces The Tmote Sky can also be powered via the on-board USB interface
when plugged into the USB port of a host computer for programming or communication. The operating
voltage when attached to the USB is 3 V.

3.3.6 External Interfaces

Data Buses The Tmote Sky uses a FT232BM usb-to-serial chip from FTDI as a primary communica-
tion channel with the host controller. The USB interface is connected to the USART1 module on the
microcontroller. On the PC side, the USB connection appears as a regular serial port. In addition to the
USB serial channel, the expansion connector on the Tmote Sky also exports the raw UART0 receive and
transmit lines and one I2C and/or SPI bus.

Debug/Programming The same USB interface is also used to (re)program the microcontroller flash.
Tmote Sky exports the microcontroller JTAG pins for in-circuit debugging and reprogramming via an
additional interface. The microcontroller flash can also reprogram itself from software (with some OS
support).

c©Embedded WiSeNts consortium: all rights reserved page 21

Embedded WiSeNts Research Integration: Platform Survey

ADC Inputs The 10-pin extension connector provides access to four ADC channels. Additional two
channels are exported via the 6-pin “exclusive” interface.

Digital I/O and Interrupts The extension connector provides four pins that can be used as general
I/O (when not used as ADC/I2C functional pins). Two additional general IO pins are available on the
“exclusive” interface. This interface also exports the two DAC channels of the microcontroller as well as
the interrupt lines for the user interface elements == the reset and the user buttons.

3.3.7 Packaging

Dimensions Tmote Sky has the following nominal dimensions: width – 3.2 cm, length – 6,55 cm and
height 4 – 0.66 cm.

3.3.8 Availability

Developer/Manufacturer The Tmote Sky boards are produced by MoteIV Corporation, San Franciso,
CA. [Mot].

Cost The units can be obtained directly from the manufacturer via a convenient web ordering service.
Purchased individually, a single Tmote Sky unit (without the on-board sensors) costs about $130. The
humidity, temperature and light sensors cost additional $50. A 10-unit Tmote Sky Developer Kit can be
obtained for $790, driving the single unit price down to $79.

3.3.9 Support

The main support for the Tmote Sky platform is provided via the manufacturer web site and via e-mail.
Software related issues are also handled via the TinyOS mailing lists since many of the Tmote Sky users
are also using TinyOS.

Software Tmote Sky is fully compatible with TinyOS 1.x and TinyOS 2.0 and MoteIV originally dis-
tributed a cygwin based software installer providing full TinyOS development environment for Windows.
Recently, they have developed a hardened TinyOS distribution called Boomerang, specifically optimized
for the MoteIV product family.

More recently the Tmote has also become one of the standard platforms for the Contiki operating
system.

Documentation When delivered to the customers, the Tmote Sky units are accompanied with a “Quick
Start Guide” and a detailed “Data Sheet” documents. New versions of the documentation can be down-
loaded from the MoteIV web site.

Community The MoteIV web-site features a community-based Wiki section 5 which is the central repos-
itory of information for the Tmote Sky user community.

4without battery pack and SMA antenna
5http://www.moteiv.com/community/Moteiv Community

c©Embedded WiSeNts consortium: all rights reserved page 22

Embedded WiSeNts Research Integration: Platform Survey

3.3.10 Experiences with the TMote sky platform

General. Tmote sky nodes are, as the ESB2 nodes, equipped with a TI MSP 430 microcontroller,
however with 10 KB RAM (five times larger than on the ESB nodes) which allows developers to pay less
attention to RAM usage. The nodes themselves are robust and do not break easily.

Processing and Memory. As mentioned above, the Tmote sky nodes feature enough memory, more
than many other platforms in particular RAM.

Sensing/Actuating Capabilities. In contrast to e.g. the ESB nodes, Tmote sky nodes feature only
three sensors on their board, namely light, temperature and humidity. These sensors are not very exciting
for demo purposes.

Communication. One advantage of the nodes is the use of USB for serial communication (USB is on
the way to replace the traditional serial interfaces).

Having a standard compliant 802.15.4 radio is an attractive feature which is appreciated by industry.
The radio is also very flexible and provides a number of features such as automatic CRCs, automatic
ACKs, MAC address filtering, security features built on the AES chiper, etc. An additional advantage of
the radio is its very low power consumption when in idle mode. However, the integrated on-board antenna
does not seem very powerful.

Energy. The nodes can also be powered via USB which is very convenient when experimenting in labs
since nodes do not behave strangely as they do when batteries are depleting.

c©Embedded WiSeNts consortium: all rights reserved page 23

Embedded WiSeNts Research Integration: Platform Survey

Figure 2: BTnode rev3

3.4 BTnode

3.4.1 Introduction

The BTnode [BTna] is an autonomous wireless communication and computing platform based on a Blue-
tooth radio and a microcontroller. It has been developed as a demonstration platform for research in
mobile and ad-hoc connected networks and distributed sensor networks. The BTnode has been jointly
developed at the ETH Zurich (Swiss Federal Institute of Technology in Zurich) by the Research Group for
Distributed Systems, and the Computer Engineering and Networks Laboratory. Its development had been
primarily supported by the NCCR-MICS [NCC] and the Smart-Its [Sma] research projects, the latter being
a part of the European initiative The Disappearing Computer, and funded by both the Commission of the
European Union and the Swiss Federal Office for Education and Science.

There have been three major hardware revisions of the BTnode hardware platform: BTnode rev 1,
BTnode rev2 and BTnode rev3. The BTnode rev3 is now successfully used in severa lresearch projects
spanning from rather simple applications with few nodes to large, interactive networking applications, some
of them supported again by the NCCR-MICS [NCC] Swiss-founded project.

As a software system, the BTnode can run both the BTnut, and the TinyOS operating systems. Details
on software support issues are provided in section 4.

Figure 3 provides an overview of the BTnode hardware architecture, whose main components are detailed
in the subsections below and summarized in table 66.

6Table 6 shows the BTnode rev 3 power consumption as reported in [BTna]. All values are nominal values measured
on a live system at 3.3V .

c©Embedded WiSeNts consortium: all rights reserved page 24

Embedded WiSeNts Research Integration: Platform Survey

Figure 3: BTnode Hardware Architecture [BTna]

3.4.2 Microcontroller

The BTnode platform is equipped with an Atmel ATmega128L microcontroller. It features an 8-bit RISC
core delivering up to 8 MIPS at a maximum of 8 MHz. The Atmel ATmega128L is provided with 128kbytes
of in-system programmable Flash memory, 4 kbytes on-chip static RAM and 4 kbyte EEPROM. Since the
Atmel ATmega128L can address up to 64 kbytes main memory, the 4 kbytes of internal SRAM are extended
to 64 kbytes through an external, additional (60 kbytes) memory module.

The microcontroller features a 32 kHz real time clock and 7.3728 MHz system clock.

3.4.3 Radio Transceivers

The BTnode platform features two independent communication modules: a Bluetooth radio and a low-
power radio. Both radios can be operated simultaneously or be powered off when not used.

• Bluetooth radio - The BTnode rev3 features a Zeevo ZV4002 Bluetooth system, supporting a
Scatternet with up to 4 independent Piconets (each Piconets with 7 slaves). The Bluetooth module
is connected to the Atmel ATmega128L through a UART interface.

• Low-power radio - The Chipcon CC1000 is the secondary BTnode on-chip radio. It operates at
868 MHz, but other operating frequencies within the ISM band 433-915 MHz can also be used. An
integrated (PCB printed) monopole antenna is the default assembly option. Additionally, both an
external wire and an external coaxial connector (MMCX type) can be used.

3.4.4 Storage

As mentioned earlier in this section, the BTnode on-chip memory consists of 128 kbytes of in-system
programmable Flash memory, 4 kbytes EEPROM, and 4 kbytes SRAM. The on-chip SRAM is extended
to 64 kbytes through an external 256 kbytes memory module. 180 kbytes out of the remaining 196 of the
external SRAM are provided as three data cache memory banks, of 60 kbytes each. The remaining 16
kbytes are unused.

c©Embedded WiSeNts consortium: all rights reserved page 25

Embedded WiSeNts Research Integration: Platform Survey

Basically, the flash ROM is used for storing programs and constant data, the RAM is used for allocat-
ing heap, global variables and stack, while the (power expensive) EEPROM is used to store persistent
configuration data. Even though the Flash ROM has theoretically unlimited read capability, the number
of write/erase cycles is limited. The flash ROM in the Atmel ATmega128L microcontroller is guaranteed
to overcome at least 1000 of these cycles, in the reality this number is typically much higher. Since the
content of the EEPROM is not erased when power supply is removed, and since write and read access are
typically very slow, this memory is used for storing system configuration data, which must be read once
at system startup and is typically seldom modified.

3.4.5 Sensors and Actuators

Sensing capabilities on the BTnode platform can also be easily obtained by connecting single sensors or a
sensor board to the appropriate lines of the J1 extension or J2 debug connectors (see also section 3.4.7).
Available sensor boards are the ssmall sensor board from Particle Computers and the BTsense.

ssmall Sensor Board. The ssmall sensor board is available for purchase from Particle Computer GmbH7.
There are two versions of this sensor boards, the Medium and the Full. The ssmall Medium sensor board
is equipped with the following sensors:

• TSL2500 daylight and IR light sensor, manufactured by TAOS (Texas Advanced Optoelectronic
Solutions)

• TC74 temperature sensor (typical accuracy: ±0.5oC)

• 2 LEDs (can be replaced by, e.g., vibration motor)

• MAX8261 OP capacitive microphone (high precision, high linearity)

• ADXL210 2-axis acceleration sensor, manufactured by Analog Devices (10g max, ±40 mg resolution,
responsiveness < 1ms)

It is also prepared for hosting pressure sensor, if needed. It does not feature its own processor and
receives power supply either through the main board (the BTnode) or through a separate 1-3.3V power
supply. It is 17x22 cm in size and can be connected to the BTnode through the USP programming board
and the J1 connector.

The ssmall Full sensor board is identical to the Medium but features an additional

• 3 axis acceleration sensor (composition of 2 ADXL210)

BTsense. The BTsense is a 2x4 cm sensor board that can be easily affixed to the side of the BTnode.
This board has been designed and developed at the Institute for Pervasive Computing of the ETH Zurich8

and it has been successfully used in several student projects and teaching. It features:

7Particle Computer GmbH (www.particle-computer.net)
8By Matthias Ringwald and Jonas Wolf, with contribution by Benedikt Ostermaier and Marc Langheinrich

c©Embedded WiSeNts consortium: all rights reserved page 26

Embedded WiSeNts Research Integration: Platform Survey

• TC74 temperature sensor (digital, I2C)

• TSL252R light sensor (analog)

• AMN1 passive infrared motion sensor, (digital, logic level)

• 7BB-12-9 piezo buzzer

Additional I2C digital sensors as well as one external analog sensor can be added to the board. This
sensor board is currently used for teaching and research and not (yet) available for commercial purchase.

Actuators can also be easily connected to the BTnode platform through the extension connector J1.
For debugging purpose, 4 LEDs are embedded on the BTnode circuit board.

3.4.6 Power Supply

The standard power supply are 2-cell AA batteries. The common range for these is 2.0− 3.0V DC when
either primary (i.e., not rechargeable)or secondary (i.e., rechargeable) batteries are used. Alternatively
3.8− 5.0V can be supplied through the VDC IN pin on the external connectors J1 (pins 17 and 18) and
J2 (pin 15).

All BTnode electronics components are DC-powered at 3.3 V. To ensure stability of operation, a constant
3.3V voltage level is thus provided by adequate step-up/step-down converters. When powering the BTnode
with batteries, the primary step-up (boost) converter can readjust every input voltage in the range 0.5−3.3
V to a stable, 3.3V supply voltage. An analogous step-down (buck) converter, can regulate the 3.8−5.0V
voltage eventually supplied through the VDC IN external pin.

To upload program code to the BTnode through a USB port, a dedicated programming board must be
attached to the node. While connected to the USB programming board, the BTnode is powered by the
USB connector, and does not need additional power supply.

A summary of the power requirements of the BTnode under various operational conditions is reported
in table 6.

3.4.7 External Interfaces

Several external interfaces are available on the BTnode platform: UART/USART, SPI, I2C, GPIO, ADC.
To physically connect to a BTnode, either the extension connector J1, or the debug connector J2 can

be used. Both types are available at Farnell or Digikey in small quantities (Molex 1.25mm Wire-to-Board
and Hirose DF17 Board-to-Board connectors)

3.4.8 Packaging

The BTnode has a very small form factor (6cm x 4 cm), which perfectly fits the platform battery case.
The BTnode is completely lead-free. The BTnode is a very robust platform and mechanical destruction
originates in most cases from users’ improper handling. However, electrostatic discharge (ESD) and
wrongful operation can harm BTnodes and make the hardware partially or completely unusable. Useful
“Tipps & Tricks” for a safe BTnode handling are available from the project web site [BTna].

It is also worth to mention that since all electronics units are situated on one single side of the BTnode
circuit board, the board itself is solidly affixed to the battery case.

c©Embedded WiSeNts consortium: all rights reserved page 27

Embedded WiSeNts Research Integration: Platform Survey

3.4.9 Availability

The BTnode rev 3 platform, as well as related hardware and software products9 are available for purchase
through a contract (Swiss) manufacturer10. The pricing for a single BTnode sample is around 165e, while
a complete developer kit containing 2 BTnodes, the necessary hardware and software tools for in-system
programming, and a CD with the BTnut software suite and related tools, has a pricing of about 520 e.

The ssmall sensor board is available for purchase from Particle Computer GmbH11. The price of the
Medium board is about 80 e, while the Full can be purchased for 100 e. Samples of the BTsense board
can be obtained by contacting the Institute for Pervasive Computing (Research Group for Distributed
Systems) at ETH Zurich12.

3.4.10 Support

The BTnode is a well-established prototyping platform and is used in more than 30 research projects. The
BTnode website [BTna] is a rich source of useful information and technical documentation. The active
mailing list additionally offers the possiblity to pose questions and problems and get assistance from expert
BTnode users.

3.4.11 Experiences with the BTnode platform

General. The BTnode is a very robust hardware platform, that has been widely used in both research
and teaching. As we will detail in section 4.4.6, once you purchased the hardware, getting your first
application running on the Btnode will take at most few hours. The software development tools can be
easily installed on top of the Windows, Linux or on Mac OS operating systems and detailed installation
guides and tutorials are available from the BTnode website [BTna]. The BTnode can be programmed
in standard C language, when the BTnut system software is installed on top of it, or in NesC, when the
TinyOS operating system is used.

Due to its high flexibility, the BTnode can be used for accomplishing with a variety of different research
tasks, varying from the implementation and testing of new MAC protocols [RR05a], to the development
of network monitoring and debugging tools [RR05b, RYR06]. The BTnode has also been successfully and
widely used as a prototyping platform for ubiquitous applications[KL01, Sma].

In September 2003 about 15 BTnode users and developers took part in a survey aimed at understanding
what people mostly like/dislike about the platform. This study [BTnb], as well as subsequent experiences,
proved the BTnode to be a suitable platform for supporting both wireless sensor networks research and
application prototyping.

Processing and Memory. The processing capabilities and the available storage on the BTnode are
reported to be adequate for most of the tasks undertaken.

9See section 4.4 for details about BTnode-related software products
10www.art-of-technology.ch
11Particle Computer GmbH (www.particle-computer.net)
12http://www.vs.inf.ethz.ch/

c©Embedded WiSeNts consortium: all rights reserved page 28

Embedded WiSeNts Research Integration: Platform Survey

Sensing/Actuating Capabilities. The BTnode can be equipped with a variety of different sensors
(as detailed in section 3.4.5) and is thus adequate for prototyping a variety of sensor-based, ubiquitous
applications. A major drawback is the lack of on-chip sensors on the BTnode circuit board: attaching
external sensors causes the hardware to be less robust and prone to faults. However, the high flexibility of
the BTnode platform allows users to add a variety of different sensors, thus enabling a easy customization
of the platform. When adding new sensors to the BTnode, however, the correspondent custom sensor
drivers must be implemented by the user.

Communication. Many users particularly like the fact the BTnode is able to easily interact (through
the Bluetooth radio) with other devices like mobile phones or PDAs. Moreover, the existence of two
independent radio modules offers a mean for unobtrusive debugging and monitoring, since, e.g., the
Bluetooth radio can be used as a monitoring backchannel while the Chipcon radio operates as the standard
communication channel between nodes [RYR06].

It has recently been observed that having both the Chipcon and the Bluetooth radio active, the measured
bit error rate for the Chipcon radio is higher than when the Bluetooth module is off. BTnode developers are
currently working on this problem and it seems that shielding the Chipcon module would help in avoiding
this kind of interferences between the two on-board radios.

The Bluetooth radio has been widely tested and used in a real testbed with more than 70 nodes and it
reaches a communication range of about 20 to 30 meters in indoor environments.

Several users complain about the unpredictability of the gain of the on-board antenna for the Chipcon
radio, which implies an unpredictability of the achievable communication range. Therefore, it is recom-
mended to equip the BTnode with an external antenna, which would allow to achieve more than 100 meters
(and up to 300 meters) communication range in outdoor environments. To add an external antenna, it is
sufficient to solder a wire on a (therefor provided) connector on the BTnode board.

Energy. The Bluetooth module, even if often indicated as the most appreciated feature of the BTnode
platform, also has the drawback of the (for wireless sensor networks requirements) relatively high power
consumption. Recent studies have however shown, that using adequate power management policies allows
for a significant reduction in terms of energy consumption of the Bluetooth radio [NT06].

Equally problematic is the relatively high power consumption occurring when the BTnode operates in idle
mode. Therefore, BTnode developers recently developed a software driver for power management allowing
to turn down the idle power consumption to about 0.5 mW. The driver, currently under evaluation, will
be soon publicly available.

Support. For any kind of hardware and software problems, the BTnode users can always refer to the
small but active BTnode community, or to the well-maintained BTnode “Tips and Tricks” website13.

13http://www.btnode.ethz.ch/Documentation/TipsAndTricks

c©Embedded WiSeNts consortium: all rights reserved page 29

Embedded WiSeNts Research Integration: Platform Survey

Processor: Atmel ATmega128L

Architecture
8-bit RISC

Speed
8 MHz

Memory
RAM ROM EEPROM cache
4 (+60) kbytes SRAM 128 kbytes Flash 4 kbytes 3x60 kbytes

Power Consumption

BTnode rev3 Bluetooth BTnode rev3 Low Power Radio
Battery Supply 2 AA cells
Minimum Vin 0.85 V

Battery Capacity 2900 mAh
Regulated Supply yes

CPU sleep, Radio off 9.9 mW 9.9 mW
CPU on, Radio off 39.6 mW 39.6 mW

Tranceiver(s): CC1000

PHY MAC Freq Antenna(s)
B-MAC 868 MHz integrated monopole,

external wire, and
external coaxial connector

Range Bitrate Other
> 100 m outdoor (ext antenna) 76.8 kbps -

Tranceiver(s): Bluetooth ZV4002

PHY MAC Freq Antenna(s)
Bluetooth 2.4GHz integrated monopole
Range Bitrate Other
20-30 m indoor up to 723 kbps -

Table 6: At a glance: BTnode rev 3

c©Embedded WiSeNts consortium: all rights reserved page 30

Embedded WiSeNts Research Integration: Platform Survey

Power consumption (transceivers)

BTnode rev3 Bluetooth BTnode rev3 Low Power Radio
CPU on, Radio listen 92.4 mW 82.5 mW

CPU on, Radio RX/TX 105.6 mW 102.3 mW
CPU on, Bluetooth Inq 198 mW –

CPU on, Radios both listening 135.3 mW
Max. Power 198 mW 102.3 mW

Sensors

Builtin Available Interfaces
no ssmall sensor boards, BTsense board I2C, J1, J2 connectors

External interfaces

Programming Debugging Data ADC/DAC
USB progamming board J2 connector UART, SPI, I2C GPIO yes

Form factor

Dimensions Packaging Environmental
issues

6cm x 4cm standard lead free

Support and community

Commercial Manual Tutorials Other
yes yes yes –
Users web Mailing Users’

list Forum
> 30 projects yes yes no

Table 6: At a glance: BTnode rev3 (con’t)

c©Embedded WiSeNts consortium: all rights reserved page 31

Embedded WiSeNts Research Integration: Platform Survey

3.5 Ambient platforms: µNode and SmartTag

Ambient platforms can be used in a variety of situations and applications, such as environmental monitor-
ing, farming and agriculture, context-aware personal assistants, home security, machine failure diagnosis,
distributed access control systems, building automation, medical monitoring, transportation and logistics,
and surveillance and monitoring for security.

The Ambient platforms are developed by Ambient Systems B.V. [Amba], a spin-off of the University of
Twente. Ambient platform support mesh-, star-, and hybrid-networks, which is typically composed out of
Ambient µNodes (60 x 32mm, see Figure 4), Ambient SmartTags (36 x 20 mm), and Ambient Gateways
(not discussed).

Figure 4: Ambient µNode

MCU The Ambient Systems µNode contains a TI MSP430 microcontroller, featuring 10kB of RAM, and
48kB of flash. This 16-bit RISC processor features extremely low active and sleep current consumption
that permits the µNode to run long without the need to change the battery.

The microcontroller features a 32 kHz real time clock and 4.6 MHz system clock.

Radio Transceiver Communication takes place in the 868 MHz or 915 MHz band (frequency hopping
can be used in both bands) at a rate of 50 kBaud. The output power is adjustable in the range between
-10 dBm and 10dBm. The power consumption is 9mA at -10dBm for transmit, 12.5mA peak for receive,
and 2.5µA at standby. The node has an integrated antenna with a 50m range indoors and 200m range
outdoors.

The µNode is compatible with FCC standard CFR47 part 15, and ETSI EN 300 220-1.

Storage The Nodes have access to external memory for storing arbitrary data. Up to 4 Mbit of non-
volatile memory is available to the user of the platform.

c©Embedded WiSeNts consortium: all rights reserved page 32

Embedded WiSeNts Research Integration: Platform Survey

Processor: TI MSP430

speed memory features
4.6 MHz 58kB Ultra low-power RISC
Memory
RAM ROM cache other
10 kB 48 kB – 512 kB EEPROM
Power
modes sleep MCU sensor all
4 modes 12 µA < 2mA -

Power

input battery capacity external power
2.7-3.6V 2x AA - -
charge time lifetime other
- > 4 month -

Tranceiver(s): XXX

PHY MAC freq antenna(s)
- - 868/915 MHz whip
power control range bitrate(s)

4 levels > 200m 50 kbit/s
power consumption
sleep idle xmit rcv
2.5 µA 2.5 µA 12-27 mA 8-12.5 mA

Sensors

builtin On board switch
available Temperature, Light, Humidity, etc.
interfaces RS232, SPI, I2C

Table 7: At a glance: Ambient Systems µNode

c©Embedded WiSeNts consortium: all rights reserved page 33

Embedded WiSeNts Research Integration: Platform Survey

External interfaces

Programming: JTAG, Over-the-air programming
Debugging: JTAG, Graphical LCD, Status LEDs
Data: RS232
ADC/DAC interfaces: ADC (8 channels, reference voltage), DAC (2 channels), GPIO (8)

Form factor

environmental
form factor dimensions packaging issues
PCB, including 6 x 3 cm - -
battery clips

Support and community

commercial manual tutorials other
yes yes yes -

mailing user
users web list forum
> 100 (est) www.ambient-systems.net - -

Table 7: At a glance: Ambient µNode (con’t)

Sensors The µNode v2.0 comprises an onboard temperature sensor and push button, but can be extended
with several sensor boards, like light intensity, humidity, temperature and motion boards through its
versatile digital and analog I/O interface. SPI and I2C (bi-directional) interfaces are available.

The platform includes a 12-bit analog to digital converter and standard I/O to which the user can
connect sensors and actuators. Several I/O lines can generate interrupts for efficient handling of sensor
events. Additionally, three lines are available to generate reference voltages for analogue sensors.

Ambient Systems can design and implement specific interfaces needed for a specific project.

Actuators The Nodes incorporate three programmable status LEDs (RGB) and an ultra low-power
graphical LCD of 102 x 80 pixels.

Others actuators can be added on request.

External Interfaces Node board provides pin heads for:

• JTAG (programming and debugging application processor)

• I/O lines

• Analog-Digital-Converter (ADC), reference voltages

• RS232

c©Embedded WiSeNts consortium: all rights reserved page 34

Embedded WiSeNts Research Integration: Platform Survey

• I2C

• SPI

• LCD connector

Energy Storage The µNode V2.0 is powered by two regular AA cells, however it can take any supply
between 2.7V and 3.6V. Further, it has been successfully tested with solar cells as power source.

Packaging The dimensions of the µNode V2.0 is 60 x 32 mm. Batteries are connected to battery clips
on the bottom side of the µNode. The µNode appears to be made out of standard electronics materials.
The status of any environmental issues is unknown.

Availability The µNode is available from Ambient Systems B.V. [Amba]. Each µNode costs approxi-
mately EUR 80. Discounts apply for research centers and schools. The µNode are delivered with a CD
containing documentation of the platform, software tools, an evaluation version of AmbientRT (can be
used for all development work) and a description of its API.

Support is provided by the manufacturer Ambient Systems B.V.

3.5.1 SmartTags

The Ambient SmartTags (see Figure 5 are a ”simpler” version of the µNode, with limited memory and
sensing and actuating capability.

SmartTags have been designed for applications requiring very low-cost, ultra compact, and extremely
low-power sensor nodes. The SmartTags seamlessly communicate with the mesh network established by
Ambient µNodes to forward their data using a ultra-low power protocol. The SmartTags can not use
multi-hop communication.

The main differences with the µNode is that SmartTags are only 2 x 3.6 cm (can be easily be fit in a
key ring), run on a coin-cell battery, have a 16 MHz 8051 microcontroller, 32 Kbit EEPROM memory, the
antenna range is 30m indoors and 100m outdoors, can only have one sensor, one button and one LED
connected.

3.5.2 User experience with µNode and SmartTag

General At the University of Twente, we have roughly one year’s experience with the µNodes and Smart-
Tags of Ambient Systems B.V. The hardware is successfully used in various test applications, for example
we experimented with WSNs registering temperature and humidity and tracking people in our building
and the hardware is applied in experiments on the Great Barrier Reef, monitoring ocean temperature.

In general, we are satisfied with the hardware and complementary software (AmbientRT). It is reliable
and allows rapid development of long-lived applications.

Processing and memory Sufficient for networking protocols and experiments. Sensor data can be stored
locally on the nodes themselves in a 4MBit non-volatile memory.

c©Embedded WiSeNts consortium: all rights reserved page 35

Embedded WiSeNts Research Integration: Platform Survey

Figure 5: Ambient Smart Tag

Communication capabilities First of all the radio range. In open field experiments, the nodes have an
outstanding communication range of 500m. Indoor we did measure a radio range of 100m. Both ranges
in the second lowest transmit power.

We successfully implemented various medium access control and routing protocols on the platform.
The radio driver included in AmbientRT provides clear functionality and simplifies implementation. The
scheduling mechanism in AmbientRT eases critical timing of radio tasks.

The platform can also communicate via serial link (RS232), SPI or I2C. Again, drivers are included.

sensing/actuating capabilities Besides a switch and a low-accuracy temperature sensor in the CPU, the
µNodes do not have built-in sensors. However, the nodes have quite some I/O available. We successfully
added analogue and digital (SPI, I2C etc) sensors to the platform. The I/O pins can also be used for
actuation.

Ambient Systems B.V. has a few sensorboards available for the µNode.

Energy consumption The power consumption of the platform matches documentation. Measurements
reveal –not surprisingly– that the transceiver is the most energy consuming device of the platform. However
the radio range is satisfactory at lowest transmit power level, resulting in peak currents of roughly 12mA.

The nodes in our tracking application lasted four months on a single set of batteries, while running LMAC
and transmitting data messages (32 bytes) once per 10 seconds. However, nodes reporting temperature
and humidity once per four minutes are still running on their first set of batteries. An important feature
of the hardware is that the battery voltage can be monitored and the nodes can be programmed to signal
almost empty batteries.

Platform specific development experience Development for the platform can be done with a GNU
toolchain (commercial compilers and debuggers are also available). Installing is simple on both windows

c©Embedded WiSeNts consortium: all rights reserved page 36

Embedded WiSeNts Research Integration: Platform Survey

and linux machines. There is a vivid user community for developing on the MSP430 CPU’s, the processor
used on the µNode, willing to answer any question.

Developing and debugging is very convenient on the µNodes, certainly when AmbientRT is used. The
devices have a connector for a graphical LCD, which can fit up to ten lines of status information. Drivers
and fonts (single and double row) are included in AmbientRT.

Another development feature is the fact that the nodes are remotely programmable; convenient, certainly
when large numbers of nodes have to be programmed at once. One µNode connected via serial link to
PC allows us to put selected nodes to factory state and to upload new firmware to them. Of course the
nodes are also programmable by a JTAG interface.

Discussion In conclusion, we experienced the µNode platform as a good platform to develop and test
WSN applications. Processor and memory capabilities are sufficient and the radio range is outstanding.
The platform by itself does not contain any sensors, but can easily be extended. The energy consumption
of the platform is as is stated in documents. Our message intensive tracking application kept on working
for four months on a set of batteries. Development, flashing and debugging are convenient, due to the
combination of hardware and software (AmbientRT).

c©Embedded WiSeNts consortium: all rights reserved page 37

Embedded WiSeNts Research Integration: Platform Survey

Processor
type speed memory features
MPS430G1611 48 kB flash/ROM; 16 bit RISC architecture

10 kB RAM 3 DMA internal channels
power power power power
modes (sleep) (standby) (active)

< 0.1 µA 1.1 µA ÷ 2 µA 330 µA ÷ 500 µA
2.2 V ÷ 3 V 2.2 V ÷ 3 V

Memory
RAM ROM cache other
10 kB (on-chip) 48 kB flash – 4MB serial EPROM

(connected via SPI bus)
Tranceiver
type PHY MAC freq antenna(s)
TDA5250 FSK CSMA supported 868÷ 870 MHz Internal+External

(SMA-connector)
power range range bitrate(s)
control indoor outdoor
High < 30 m < 80 m 64 kbps nominal
Low < 10 m < 30 m 19.2 kbps ÷ 34.8 kbps

(soft. limited)
Voltage Range TX power Abs.Current Abs. Current
2.1÷ 5.5 V ≤ 13 dBm 12 mA 9 mA

Sensors
builtin: Temperature (LM61)

Range:−30◦C ÷+100◦C;
Accuracy: ±2◦C for room temperature; ±3◦C over the full range
Output: 10 mV/1◦C + 600 mV DC offset

Light (NSL19-M51)
Radio Signal Strength Indicator (RSSI)

Range:0x0000 ÷ 0x0FFF ;
interfaces: 16–pin connector available for additional sensors
Power

input voltage battery lifetime
3 V CR2477 ∼ 1 h full activity
external power other power
USB 2× AAA 1.5V slim battery pack

External interfaces
Programming: USB, JTAG
Debugging: USB
Data: UART, USB
ADC/DAC interfaces: 12-bit

c©Embedded WiSeNts consortium: all rights reserved page 38

Embedded WiSeNts Research Integration: Platform Survey

Aspect
Form factor dimensions packaging environmental issues
Oval 3 cm× 7 cm× 2 cm none ???
Support

commercial manual tutorials other
no yes (39 pp) no –

Community
number of web site (s) public user
users (est) mailing list forum
100

Table 7: At a glance: Platform EyesIFXv2.0 (cont’d)

c©Embedded WiSeNts consortium: all rights reserved page 39

Embedded WiSeNts Research Integration: Platform Survey

3.6 EYES

Figure 6: EyesIFXv2 v2.1

3.6.1 Overview

EyesIFXv2 is a sensor node developed by Infineon for the Energy-efficient self-organizing and collaborative
wireless sensor networks project EYES.14 Infineon has combined EYES baseband hardware with a number of
optimized peripheral sets to create a series of chips aimed at specific automotive, industrial and consumer
applications. Infineon has recently released a new version of the Eyes node, the EyesIFXv2.1. The
components of this new board are almost the same of the older v2.0. Two leds have been added to show
the radio activity. The two node versions have the same radio unit, so they can communicate without
problems. Also the compiled binary images should work properly on both the platforms.

14The EYES project is a three year European research project (IST-2001-34734), on self-organizing and collaborative
energy-efficient sensor networks.

c©Embedded WiSeNts consortium: all rights reserved page 40

Embedded WiSeNts Research Integration: Platform Survey

3.6.2 MCU

As other sensor boards (T-Mote, ESB, etc), EYES nodes are equipped with an ultra-low power MSP430F1611
microcontroller by Texas Instruments, with 10 kB on–chip RAM and 48 kB flash/ROM. Additionally, there
is a 4Mb Atmel serial EPROM connect via the SPI bus. Since this µC is used in other platforms, we have
collected the details in Appendix 3.7.

3.6.3 Radio Transceiver

PHY The IC is a low power consumption single chip FSK/ASK Transceiver for half duplex low datarate
communication in the 868−−870 MHz band. In the eyesIFX nodes it operates with FSK modulation, with
a sensitivity < −109 dBm, enabling up to 64 kbps half duplex wireless connectivity (Manchester Encoded).

The platform is also equipped with an on–board stripline antenna and a SMA–connector for an external
antenna. The external antenna is the pre–defined manufacturer choice, while onboard antenna can be
selected by soldering a 0Ω resistor into the correct location on the chipboard. Therefore, switching
between external and onboard antenna requires a (not trivial) manual intervention.

Capabilities The transceiver contains a highly efficient power amplifier, a low noise amplifier (LNA) with
Automatic Gain Control (AGC), a double balanced mixer, a complex direct conversion stage, I/Q limiters
with Radio Signal Strength Indicator (RSSI) generation, an FSK demodulator, a fully integrated Voltage
Controlled Oscillator (VCO) and Phase-Locked Loop (PLL), synthesizer, a tuneable crystal oscillator, an
onboard data filter, a data comparator (slicer), positive and negative peak detectors, a data rate detection
circuit and a 2/3-wire bus interface. The RSSI is given as an analog voltage between 400 and 1300 mV.
It is converted into a digital 12-bit value by the µC, which ranges from 0x0000 to 0x0FFF .

Energy consumption The transceiver are power with a supply voltage range in 2.1−−5.5 V. The typical
current absorption is Is = 9 mA in reception, Is = 12 mA in transmit mode. The transmit power can be
partially modulated by means of a potentiometer, up to a maximum of +13 dBm. Additionally there is a
power down feature to save battery power.

3.6.4 Sensors

The sensor equipment of the EYES platform encompasses a temperature sensor and a light sensor. (An
additional internal temperature sensor is also present, but it is not very accurate.)

The temperature sensor is the Model LM61 produced by National Semiconductor Range, which operates
in the range −30◦C÷+100◦C with an accuracy of ±2◦C for room temperatures ±3◦C over the full range.
The output is given as an analogical voltage signal that is aproximately proportional to the measured
temperature, with 10 mV voltage gap for each Celsius degree, and +600mV DC offset for measuring
below zero temperatures. Light Sensor is the Model NSL19-M51 Light Dependant Resistor.

Besides the onboard sensors, additional external sensors can be connected by using the extender port
provided by the platform.

c©Embedded WiSeNts consortium: all rights reserved page 41

Embedded WiSeNts Research Integration: Platform Survey

3.6.5 Energy Storage

The nodes run on lithium batteries with a capacity of 1000 mAh. Alternatively, there is an external power
connector to supply DC current as well as a USB port that can power the node.

3.6.6 External Interfaces

External data interfacing is possible through a USB or JTAG interface, which enables programming of the
microcontroller and in-circuit debugging. To display status information, an array of 4 LEDs is available
(in v2.1 there are 6 leds avaiable). In addition, there is an expansion port that allows the connection
of secondary boards with additional analog/digital sensors, actuators, or measurement instruments (e.g.,
logic analyzer). This connector provides access to the SPI 3-wire bus, additionally the RSSI analog level
from TDA5250 can be measured and a external voltage reference for the A/D converter can be provided.
Finally some bits from the MSP430 ports can be accessed for I/O operations.

3.6.7 Packaging

The eyesIFXv2.0 node appears as in Fig.15. It has an oval shape that measures approximately 3cm ×
7cm × 2cm. The packaging does not provide any form of protection against environmental hazards.

3.6.8 Availability

Infineon produces a starter kit containing 5 nodes with batteries, 1 USB cable, and 1 JTAG interface
(see http://www.infineon.com/). Furthermore, the kit includes a CD with TinyOS operating system
together with a basic network protocol stacks and development environment that can help beginners
getting confidence with the technology.

The evaluation kit costs approximately 300 EU , while the single node shall come for 70 EU. Prices and
order forms are available at the Infineon website.

3.6.9 Support

Some basic documentation regarding the EyesIFXv2.0 platform can be downloaded, free of charge, from
Infineon website. Additional information can also be found in the website of the academical research
groups that are using the platform for experimentation, such as Twente University (Netherlands), Technical
University of Berlin (Germany), CINI (Italy), University of Padova (Italy).

3.6.10 Experiences with the EYES platform

In this section we report some additional information regarding the EyesIFXv2.0 platform that has been
obtained by practicing with the board.

Communication capabilities Although the transceiver is potentially able to provide up to 64 kbps data
rate, Infineon limits the actual data rate at 19.2 kbps (software selected) which is often sufficient for
sensor networks, in order to save energy. A bit rate of 34.8 kbps has also been successfully tested. The
transceiver was designed for much lower bit rates, but the currently used ones make Manchester encoding

c©Embedded WiSeNts consortium: all rights reserved page 42

Embedded WiSeNts Research Integration: Platform Survey

superfluous – the start and stop bits of the UART protocol are completely sufficient. In principle, such a
limitation might be easily removed by the software. Nevertheless, this action might have a negative impact
on the reliability of the transmission and, hence, should be accomplished together with a modification of
the external circuitry, as specified in the Infineon Data Sheet TDA5250, pages 4-28 to 4-30.

Depending on the coverage range desired, transmission power can be set (via software) to low resulting
in a covered area of usually below 15 m in buildings or high, resulting in often more than 30 m range in
buildings. An additional regulation is provided by means of a potentiometer that should allow fine grain
emitting power regulation. However, from practical experience, it appears that the potentiometer settings
are not so accurate as the datasheet reports. This is due to the fact that the potentiometer actually
reduces the frequency spread of the FSK modulation – which has no impact up to a certain point. From
there on, only the bit error rate raises. Furthermore, the low noise amplifier of the radio can be switched
off. When switched off, the consumed energy for receiving drops to 5 mA, and limits the range further. If
the sending node transmits at low TX power, the resulting range is usually below 1 m – enabling sensor
networks on a table top.

Sensing capabilities The internal temperature sensor resides in the micro controller and is rather inac-
curate; therefore, an external one was added (LM61). To save energy, this external temperature sensor
can be disabled by the micro controller.

The light sensor is powered with the reference voltage from the micro controller. This component can
be switched off when not needed.

The RSSI is given as a 12-bit value, which ranges from 0x0000 to 0x0FFF . It might be worth noticing
that when RSSI ADC conversion fails, then the value 0xFFFF is returned in the strength field of the
received packet. Furthermore, from some measurements performed in the SIGNEt lab (at DEI), it appears
that nodes need to be calibrated before trusting the RSSI readings for comparison purposes. Indeed, the
RSSI value returned for a given received power may vary from node to node.

Energy The recommended current supply for the battery (CR2477) is 0.2 mA; however, in full power
mode the eyesIFX node requires ' 15 mA. Therefore, during intensive transmission tests, an external
power supply (USB, Battery Pack) has to be used to prevent packet loss.

Development The EYES platform v2.1 is fully compatible with Version 1.x of TinyOS operating system.
It should also be supported by the upcoming TinyOS 2.0 release. The TinyOS installation occupies
approximately 8 kB of memory, thus approx 1/6 of the available memory capacity of the board. Applications
are written in NesC, which is based on a simplified version of the standard C programming language. The
EYES nodes are fully programmable, so that users can design and develop customized functional blocks,
such as Medium Access Control, routing and so on. Nevertheless, a very essential protocol stack is provided
by Infineon and TinyOS for beginners. The stack includes an implementation of Carrier Sense Multiple
Access (CSMA) for Medium Access Control. Also, a testbed manager software is being developed at the
SIGNET lab, at DEI. Version 2.x nodes can be programmed by USB, which provides 2 virtual COM ports,
one used for data exchange and the second one for programming the node via bootstrap ability of the
microcontroller.

c©Embedded WiSeNts consortium: all rights reserved page 43

Embedded WiSeNts Research Integration: Platform Survey

3.7 Microcontroller: TI MSP430F1611

Because of its popularity in many sensor network applications, the following section provides additional in-
formation about the TI MSP430 microcontroller. This discussion focusses on the MSP430F1611; however,
much of the discussion is applicable to other processors in the MSP430 family.

Features The MSP430’s orthogonal architecture provides the flexibility of 16 fully addressable, single–
cycle 16–bit CPU registers and the power of a RISC (Reduced Instruction Set Computer). The modern
design of CPU offers versatility through simplicity using only 27 real and 24 emulated instructions and seven
consistent–addressing modes. This results in a 16–bit low–power CPU that has more effective processing
(up to 16 MIPS of performance available), smaller–sized, and more code–efficient than other 8-/16-bit
microcontrollers.

The MSP430 clock system is designed specifically for battery–powered applications. Multiple oscillators
are utilized to support event-driven burst activity. A low frequency Auxiliary Clock (ACLK) is driven
directly from a common 32-kHz watch crystal-with no additional external components. The ACLK can be
used for a background real-time clock self wake-up function. An integrated high-speed Digitally Controlled
Oscillator (DCO) can source the master clock (MCLK) used by the CPU and sub-main clock (SMCLK)
used by the high-speed peripherals. By design, the DCO is active and stable in 1µs. MSP430-based
solutions efficiently use 16-bit RISC CPU high-performance in very short burst intervals. This results in
very high-performance and ultra-low power consumption.

Memory The MSP430F1611 contains 48kB Flash Memory and 10kB on-chip RAM.

Energy Consumption The supply voltage range for EyesIFXv2.0 is 1.8 V –3.6 V . Effectively utilizing
peripherals allows the CPU to be turned off to save power or lets the CPU work on other activities to
achieve the highest performance. All MSP430 peripherals are designed to require the least amount of
software service. The analog to digital converters all have automatic input channel scanning, hardware
start–of–conversion triggers and often DMA data–transfer mechanisms. These hardware features allow
the CPU resources to focus more on differentiated application-specific features and less on basic data
handling. This means that lower cost systems can be implemented using less software and lower power.

The platform supports three ultra–low power consumption operating modes, namely:
Active Mode, in which the platform is fully operative, that requires 330 µA current at 2.2 V voltage;
Standby Mode, in which the transceiver is switched off, while the other functionalities of the board are
maintained, that requires 1.1µA current;
Off Mode, in which only RAM is retained, that requires 0.2µA current.

c©Embedded WiSeNts consortium: all rights reserved page 44

Embedded WiSeNts Research Integration: Platform Survey

Figure 7: MSP430 Microcontroller

c©Embedded WiSeNts consortium: all rights reserved page 45

Embedded WiSeNts Research Integration: Platform Survey

4 Operating systems

The other key element of the research platform is the operating system. Because of the extremely limited
resources of the hardware platforms, it is difficult to virtualize system operation to create the kinds of system
abstractions that are available in more resource rich systems. The concurrency model and abstractions
provided by operating system therefore significantly impact the design and development process. As with
the previous discussion of the hardware platform, ease of use issues - in this case, design, programming,
and debugging - continue to be an important part of the discussion.

The description of each platform follows the outline below:

• Core functions

– Basic features and design philosophy

– Concurrency models

∗ Multi-threading/tasking

• Basic OS Services

– Hardware abstraction

– Timers/Alarms

– Memory management

– Sensor primitives

– Communication primitives

• Service support

– what MAC, routing, localization or synchronization is provided by the HW/OS?

• Programming Environments

• Testing/Debugging Tools

• Support and community

As in the previous section, the objective presentation of the features and functionality available in each
OS platform is followed by a discussion of the users’ subjective experience with the platform. A outline for
the discussion follows, though it is naturally somewhat less prescriptive than the outline for the presentation
of objective material

Some operating systems have been developed for a particular hardware platform, others have been
ported to a number of platforms. The following table shows currently feasible hardware/OS pairings.

c©Embedded WiSeNts consortium: all rights reserved page 46

Embedded WiSeNts Research Integration: Platform Survey

ESB/2 µnode EYES BTnode Mica TmoteSky
TinyOS 1x Yes Yes Yes Yes Yes Yes
TinyOS 2x Yes Yes Yes
Contiki Yes Yes
NutOS Yes
AmbientRT Yes

Table 8: Hardware/OS compatibility

4.1 TinyOS 1.x

TinyOS [HSW+00] is one of the first execution environments specifically designed to meet the requirements
of resource-constrained, event-driven and networked embedded systems. Originally developed by the
University of California, Berkeley and Intel at the beginning of the decade, it has since become the most
popular operating system for Wireless Sensor Networks (WSNs). Its open-source nature and large user-base
make it the de facto standard for this class of devices.

The TinyOS 1.x family is the latest stable branch of the operating system and is used in this section
to describe the basic design principles. This branch will soon be replaced by a complete new rewrite
tentatively called TinyOS 2.0 that is presented in the next section.

4.1.1 Component-based modularization

Many of the features of TinyOS stem from the design goals of its implementation language called
nesC [GLvB+03]. NesC is an extension of C, adapted to the special needs of the network embedded
devices. One of the main characteristics of its programming model is the use of component modulariza-
tion. In this model, the functionality of the traditional monolithic abstraction layers is broken-up in smaller,
self-contained building blocks that interact with each other via clearly defined interfaces. This hiding of
the implementation behind well-defined interfaces preserves the modularity of the solution and promotes
reuse. At the same time, the component model supports richer interactions between the building blocks.
The interaction is no longer in a strict up/down nature, but starts to resemble a graph. This enables finer
extraction of common functionality and definition of complex relationships.

This model represents an especially good fit to the specific requirements in WSNs. Their event-driven
nature and the constrained resources require a code organization that is very well covered by the component
paradigm. The thin hardware wrappers, the communication primitives and the sensing tasks can all be
naturally abstracted in the form of components. The applications are then composed by wiring together
the necessary building blocks. This entails explicit specification of the components together with the
involved interfaces and their role (provider/user) in the information exchange.

4.1.2 Concurrency model

Equally important to the type of code organization is the nature of the supported interactions between the
components. The main concern here is how to best facilitate the asynchronous and event-driven type of
exchange that occurs not only in the communication context, but also in the user space, as the applications

c©Embedded WiSeNts consortium: all rights reserved page 47

Embedded WiSeNts Research Integration: Platform Survey

in WSNs are tightly coupled with the environment and usually perform processing as a reaction to some
sensed event.

Dealing with the dataflow-centric nature of the applications using limited hardware resources requires
making smart trade-offs in the operating system design. TinyOS attacks the problem by offering two levels
of concurrency: tasks and events.

Tasks are a mechanism for deferred computation that should be used whenever the timing requirements
for the computation are not strict. This includes almost all application processing apart from the low-level,
hardware related operations. Components can post a task, after which the execution immediately returns
to the poster. The actual execution is delayed until the task scheduler executes the task later. Due
to the high overhead of context-switching, the tasks run to completion and do not preempt each other.
Consequently, they have to be kept short in order to guarantee low task execution latency and high system
responsiveness.

Events also run to completion, but can preempt the execution of tasks and/or other events. A large
part of the processing in TinyOS is triggered by receiving events representing hardware interrupts. Events
are also used to signalize the completion of a split-phase operation as explained in the next sub-section.

TinyOS 1.x supports only single task scheduling policy – a FIFO. In contrast to the rest of the system
(that is implemented in nesC), the scheduler is implemented as a pure C file. This makes changing the
default scheduler more complicated than necessary. Also, the nesC task declarations and post commands
only support parameter-less tasks, so it is hard to integrate scheduling policies that require additional
parameters.

4.1.3 Split-phase operations

Due to the non-preemptive nature, TinyOS does not support blocking operations. This means that all
long-latency operations have to be realized in a split-phase fashion, by separating the operation-request
and the signaling of the completion. The client component requests the execution of an operation using
command calls which execute a command handler in the server component. The server component signals
the completion of the operation by calling a an event handler in the client component. In this way, each
component involved in the interaction is responsible for implementing part of the split-phase operation.

The decision not to hide the split-phase nature of the long-latency operations has the benefit of forcing
the programmer to be aware of their effect on the responsiveness of the system. At the same time, this
feature turns out to be one of the biggest stumbling blocks for the novice TinyOS users that are used to
the more traditional, linear execution model.

4.1.4 Static program analysis

The simple concurrency model of TinyOS allows high event-handling throughput while keeping the overhead
significantly lower than in the traditional thread-based approaches. At the same time, the model is still
vulnerable to the typical programing errors occurring in concurrent systems including deadlocks and data-
races. Minimizing the introduction of such errors is particularly important in the domain of embedded-
systems where there is no human-operator in the control-loop that can take mitigating actions. Thus, it
is of paramount importance that such errors are detected and corrected prior to execution time.

NesC imposes several restrictions on the programmer that reduce the chance of introducing complex
bugs in TinyOS code. It is a static language that does not support dynamic memory allocation or function

c©Embedded WiSeNts consortium: all rights reserved page 48

Embedded WiSeNts Research Integration: Platform Survey

pointers (even if the use of malloc or free in code do not generate compilation errors). Consequently,
the call-graph of nesC programs is fully known at compile-time, allowing nesC to perform whole-program
analysis for safety and performance optimization. This analysis can detect and report almost all potential
data-races (any update of shared state from asynchronous code). Using this information, the programmer
can remove the error by moving the critical sections into tasks or by preventing concurrent-access using
atomic blocks.

4.1.5 Hardware abstraction

Abstracting the capabilities of the hardware is a basic OS responsibility. One of the early goals of TinyOS
was to facilitate easy traversing of the SW/HW boundary by allowing some SW components to be replaced
with real HW modules (that export the same interfaces) and vice versa. Since such a flexibility requires
unrestricted component composition, the early releases of TinyOS 1.x were lacking a clear organization of
the hardware abstraction components. In addition, the exported HW abstraction interfaces were strongly
biased by the features of the Atmel AVR microcontrollers used on the mica family of nodes. This has
hampered porting to new platform and was deemed one of the most serious shortcomings preventing
wider adoption of the OS. The situation was significantly improved with the introduction of the msp430
platform [HPHS04] in TinyOS 1.1.7 (June 2004), that abstracts the capabilities of the Texas Instruments
MSP430 microcontroller family. This new platform, used as basis for the telos and eyesIFX TinyOS ports,
introduced a novel abstraction model with gradual formation of platform-independent interfaces. This
model was the forerunner of the Hardware Abstraction Architecture (HAA) used in TinyOS 2.0, leading
to a much more streamlined porting process.

The core component categories involved in abstracting the supported HW platforms in TinyOS 1.x are:

MCU core Most of the differences between the MCU core architectures are hidden from the programmer
simply by using a nesC/C programming language with a common compiler suite (the GNU C Compiler
– GCC). The standard C library distributed with the compiler creates the necessary start-up code for
initialization of global variables, the stack pointer and the interrupt vector table.

Pins TinyOS 1.x provides a thin abstraction over the external MCU pins using macros that enable setting
and clearing of I/O pins as well as changing the direction and function.

Clocks and timers The top-level timer service in TinyOS 1.x, exported by the TimerM component, pro-
vides timed periodic and one-shot millisecond-resolution events, multiplexed from a single hardware
timer compare register. With the introduction of the msp430 platform, the timer service has been
extended with platform-specific Alarms supporting millisecond, 32 kHz jiffy and microsecond reso-
lutions.

Analog-to-digital converters and sensors The original ADC abstraction in TinyOS 1.x provided only
commands for triggering a single or repeated conversion from one input channel. The interface
did not support sequence conversion modes, setting individual reference voltage per-channel or
changing the sample-and-hold time. This has been rectified with the new abstractions introduced by
the msp430 platform that reconfigure the hardware for each sampling command. The top-level OS
service is provided by wrapper components that transform the platform-independent representation
of the sampled sensors into platform-dependent settings for the specific ADC hardware module.

c©Embedded WiSeNts consortium: all rights reserved page 49

Embedded WiSeNts Research Integration: Platform Survey

Data buses TinyOS provides abstraction for several standard data buses like SPI/USART, UART, I2C,
1-Wire, etc. The abstraction is usually organized in two paths – one for data and second for control.
The data interface provides adequate commands and events for sending and receiving bytes via the
registers of the particular data-bus module. Using the control path, the clock source, prescaler
and baud-rate can be changed, and the generation of interrupts during sending or receiving can be
enabled or disabled.

External storage The secondary memory, in the form of EEPROM or flash chips, is interfaced to the
MCU using one of the above data buses. At the lowest level, the external storage components
provide execution of an “atomic access” to the chip, like sending a single command, read, write or
erase instruction. At the top-level more complex abstractions are built starting from simple block or
log reading/writing up to powerful filing abstractions like Matchbox.

Radios The component organization of the radio chip abstractions mainly depends on the particular
data interface that the radio supports. The basic data unit (bit, byte or packet) is usually directly
exposed by the lowest level components. The control of the radio is performed using a combination
of hardware pins and control registers that are accessed using the data bus abstractions. In some of
the supported radios (like the CC2420) the physical layer and parts of the MAC protocol are already
defined by the hardware. For the bit and the byte radios (like the RFM, CC1000, etc.) the basic
radio abstractions also contain software components implementing the needed packet serialization
and medium-access logic.

4.1.6 Networking services

The active messages are the main communication abstraction in TinyOS [LMG+04]. They consist of a
small identifier that is attached to each message, specifying the action that needs to be taken on the
receive side when a given message has been received. In practice the active messages are used similar to
the port concept in the TCP/IP stack. Each application has a subset of AM indexes reserved and its
receive handlers are triggered whenever the networking stack receives such a message.

The lower parts of the networking stack are generally encapsulated in an abstraction called GenericComm
that provides single hop unicast and broadcast service. The GenericComm exposes the SendMsg and
ReceiveMsg interfaces for sending/receiving fixed size message buffers – TOS Msg. The abstraction does
not support send buffering. On the receive side it performs buffer exchange with the application so that
a new message can be received while the user components are processing the current message.

The basic multihop communication pattern supported in TinyOS is the reverse-tree routing. A single
node is selected to act as a root node. Each node in the network selects a parent node that is used for
forwarding the messages back to the root and maintains its depth in the tree in the form of a hop-count
to the root.

The tree-routing protocols can differ in the way that this structure is constructed and used as well as in
the way it is maintained in the face of changing topology/radio environment. The first implementations
have used an active approach in building the tree, issuing periodic floods from the root to maintain the
topology. Lately, mechanisms have been introduced that rely on snooping the forwarded messages between
the nodes and their parents. This information is used to create candidate-parent tables from which a new
parent can be selected when the connection with the current one does not satisfy a predetermined quality

c©Embedded WiSeNts consortium: all rights reserved page 50

Embedded WiSeNts Research Integration: Platform Survey

metric. In the simplest case, the RSSI value is used to perform this evaluation. Because of the volatility of
the quality metric, its direct use can lead to frequent changes of the routing structure. Consequently, more
sophisticated techniques have been used to smooth out the metric, and filter out the unreliable neighbors
by rejection of the detected asymmetric links.

On top of the forwarding, the tree-routing protocols usually provide sender buffering and message
retransmission capability using the QueuedSend interface, for example.

4.1.7 Toolchain and PC-side tools

For basic code writing, the nesC package contains several plug-ins that provide improved support for
editing nesC source files in the most popular text editors like vim, emacs, kwrite, etc. Recently, several
academic institutions have started projects for building an integrated visual development environment for
nesC/TinyOS using the Eclipse framework.

The TinyOS distribution also contains an extensive set of tools that help the users through the remaining
phases of the development cycle like compilation, installation and debugging of applications. Most of them
are integrated using a hierarchical system of make-scripts [SM00] that hide the complexity of the individual
tools behind a convenient rule-based interface that is easily mastered even by the novice user. The make
system leverages the concept of WSN platforms to pre-configure the component include-path, select the
proper compiler, “uploading” tools and their parameters.

For example, the compilation and installation of a mica2 application with node address 2, including
debug information, can be specified using:

make mica2 install.2 debug

Apart from the basic development tools, the distribution carries an extensive set of utilities that facilitate
the writing of node-to-PC gateway applications. The serial abstraction in TinyOS 1.x contains a nesC
implementation of a framed serial protocol similar to HDLC that can be used for bi-directional communi-
cation between a sensor node and a PC-host. This is complemented by the SerialForwarder utility on the
PC-side that provides a convenient sockets abstraction over this packet stream. The writing of the PC-side
applications is further simplified by the mig and ncg tools that can extract a packet-format specifications
from nesC applications and automatically create Java boilerplate code for creating and manipulating such
packets.

TinyOS also has its own simulation framework, TOSSIM presented in Section 6.1.

4.1.8 Licensing model, community support and documentation

In addition to the technical characteristics, the acceptance of an operating system critically depends on
its licensing model, the quality and extensiveness of the documentation as well as the existence of lively
user community that can provide peer-support. TinyOS 1.x has managed fairly well on all these aspects,
as witnessed by the extensive list of over 500 academic and industrial institutions that use the OS.

One of the main reasons for the TinyOS success lies in the open nature of its development model,
with the core of the operating system under OSI certified open-source licenses like the BSD License and
the Intel Open Source License. The development effort is concentrated around a public cvs repository
hosted on the Source Forge web platform, while the user community evolves around the project web-site
at www.tinyos.net and the very active peer-support mailing list tinyos-help.

c©Embedded WiSeNts consortium: all rights reserved page 51

Embedded WiSeNts Research Integration: Platform Survey

For novice users, the existence of an extended step-by-step tutorial [Tin03] has proved as very beneficial.
Although a bit outdated (not uncommon for dynamic open-source projects like TinyOS), it illustrates
well the basic TinyOS concepts and the common pitfalls. The new TinyOS programming manual [Lev06]
provides a another useful alternative, while the nesC reference manual [GLCB06] is targeted at the advanced
user that seeks deeper understanding of the language inner-workings.

4.2 TinyOS 2.0

The growth and the maturation of sensor systems during the last several years has led to much better
understanding of the abstractions and boundaries a sensor OS should provide. While TinyOS 1.x has been
able to adapt with this progress, it became obvious that some design requirements are now more important
than others and that significant changes to the OS structure is needed to rectify the situation. This has
led to the development of TinyOS 2.0 [LGH+05], a second-generation mote operating system that keeps
many of the basic ideas of its predecessor while pushing the design in key areas like greater portability and
improved robustness and reliability.

4.2.1 Portability

TinyOS 2.0 supports greater platform flexibility in several ways. First, it introduces a three-layer Hard-
ware Abstraction Architecture (HAA) [HPH+05] that imposes composition rules on the components that
abstract the hardware resources. The bottom layer is formed by the Hardware Presentation Layer (HPL)
that provides access to basic resources such as registers, interrupts and pins via nesC interfaces. The
middle layer is the Hardware Abstraction Layer (HAL) which has higher-level interfaces that provide useful
abstractions of the full capabilities of the underlying hardware. The top layer is the Hardware Independent
Layer (HIL) which presents abstractions that are hardware independent and therefore cross-platform. In
addition to this “vertical” dimension, TinyOS 2.0 introduces the concept of chips to provide “horizontal”
decomposition of the hardware abstraction code, leveraging the fact that mote hardware is usually built out
of standard chips, with well defined interfaces. Reflecting these physical interfaces as platform-independent
abstractions like buses allows reuse of subsystems corresponding to these chips across different platforms.

The second aspect of the improved portability of TinyOS 2.0 is the use of version 1.2 of the nesC
language, which has new features to better support cross-platform networking. This version of nesC
introduces the notion of network type at the language level: programs can declare structs and primitive
types that follow a cross-platform (1-byte aligned, big-endian) layout and encoding. This allows services
to specify cross-platform packet formats without resorting to macros or explicit marshaling/unmarshaling.

4.2.2 Robustness and reliability

TinyOS 2.0 improves system reliability and robustness by redefining some of the basic TinyOS abstractions
and policies such as initialization, the task queue, resource arbitration and power management. For
example, in TinyOS 1.x all components share fixed-size task queue and a given task can be posted multiple
times. This causes a wide range of robustness problems, as if a component is unable to post a task due to
the queue being full, it may cause the system to hung. In TinyOS 2.0, every task has its own reserved slot
in the queue and can be posted only once. The new semantics lead to greatly simplified code (no need for
task reposting on error) and more robust components. The same principle of compile-time allocation and

c©Embedded WiSeNts consortium: all rights reserved page 52

Embedded WiSeNts Research Integration: Platform Survey

binding is applied to all aspects of the system: components allocate all of the state they might possibly
need; and all invariants are explicitly reflected by the components and their interfaces, rather then being
checked at runtime. This design principle limits the flexibility, but makes many OS behaviors deterministic.

Apart from these new policies, TinyOS 2.0 also brings a completely redesigned timer system, new
sensor stack, vitalized Active Messages communication layer, improved serial stack as well as new default
dissemination and collection protocols.

4.2.3 Toolchain and PC-side tools

The new toolchain distributed with TinyOS 2.0 is characterized by cleaner separation between the generic
nesC tools and the TinyOS-specific extensions. The make-based integration is maintained, and the Java
development support is extended with plain C and Python variants. TinyOS 2.0 comes with a much
more powerful simulation framework in the form of TOSSIM 2.0 with multi-resolution platform emulation,
improved radio modeling and better nesC–Python integration.

4.2.4 Development model

The TinyOS 2.0 development effort uses the same technical infrastructure as in TinyOS 1.x, but with
significant differences in the collaboration model that reflects the maturation of the project. The core de-
velopment is currently centered around the TinyOS 2.0 Core Working Group (WG) that includes developers
from Stanford, TU Berlin, UC Berkeley, UCLA, Crossbow, Moteiv, Arched Rock and Intel. The group
interacts with the wider user community by issuing requests for comments on the TinyOS Enhancement
Proposal (TEP) documents, that describe the design and structure of a given subsystem and document a
reference implementation.

The success of the new model has led the members of the TinyOS community to start a few other
smaller WG with more targeted agendas like the Networking WG, 8051 WG, 802.15.4 WG, etc. To better
coordinate these efforts in the future, the community is in the process of forming a TinyOS Alliance that
will provide strategic guidance to the project and push sensor networks towards ubiquity and deployment.

TinyOS 2.0 is currently available as a beta release from the TinyOS project website www.tinyos.net
with a full-release slated for Q3 2006.

c©Embedded WiSeNts consortium: all rights reserved page 53

Embedded WiSeNts Research Integration: Platform Survey

4.3 Contiki

The Contiki OS is an open source, highly portable, networked, multi-tasking operating system for memory-
constrained systems [DGV04]. Contiki is developed at SICS, and is used in a number of project such as
the RUNES project [Pro]. Swedish company Ewmitech is running Contiki in production networks on their
Atmel-based hardware.

4.3.1 Basic features and design philosophy

Contiki is designed to be easily portable and runs on a variety of platforms including the ESB platform
(see Section 3.2) and Tmote sky (see Section 3.3) where several low power modes are supported. The
Contiki version for Tmote sky includes support for using the available 1 megabyte external flash memory.

Contiki includes advanced reprogramming support in form of loadable modules. This feature is useful for
both program development since it shortens the development cycle and deployments. Replacing a module
is of course more energy-efficient than having to replace the whole image.

Contiki includes the uIP TCP/IP stack, which includes web server, ftp server as well as a number of
other example applications. While TCP/IP may not as energy-efficient as custom protocols tailored for
wireless sensor networks, using TCP/IP provides interoperability with existing systems and makes it easy
to integrate Contiki into existing IP network infrastructures.

4.3.2 Concurrency models

Contiki supports three concurrency models: events, threads, and protothreads. The Contiki kernel is event-
based upon which application programs can use any of the three concurrency models, or a combination of
them.

Events In severely memory constrained environments, a multi-threaded model of operation often con-
sumes large parts of the memory resources. Each thread must have its own stack and because it in
general is hard to know in advance how much stack space a thread needs, the stack typically has to be
over provisioned. Furthermore, the memory for each stack must be allocated when the thread is created.
The memory contained in a stack can not be shared between many concurrent threads, but can only be
used by the thread to which is was allocated. Moreover, a threaded concurrency model requires locking
mechanisms to prevent concurrent threads from modifying shared resources.

The Contiki kernel consists of a lightweight event scheduler that dispatches events to running processes
and periodically calls processes’ polling handlers. All program execution is triggered either by events
dispatched by the kernel or through the polling mechanism. The kernel does not preempt an event handler
once it has been scheduled. Therefore, event handlers must run to completion.

In addition to the events, the kernel provides a polling mechanism. Polling can be seen as high priority
events that are scheduled in-between each asynchronous event. Polling is used by processes that operate
near the hardware to check for status updates of hardware devices. When a poll is scheduled all processes
that implement a poll handler are called, in order of their priority.

The Contiki kernel uses a single shared stack for all process execution. The use of asynchronous events
reduce stack space requirements as the stack is rewound between each invocation of event handlers.

c©Embedded WiSeNts consortium: all rights reserved page 54

Embedded WiSeNts Research Integration: Platform Survey

Protothreads Protothreads are a novel programming abstraction that provides a conditional blocking
wait statement, PT WAIT UNTIL(), that is intended to simplify event-driven programming for memory-
constrained embedded systems. The operation takes a conditional statement and blocks the protothread
until the statement evaluates to true. If the conditional statement is true the first time the protothread
reaches the PT WAIT UNTIL(), the protothread is not blocked but continues to execute without in-
terruption. The PT WAIT UNTIL() condition is evaluated each time the protothread is invoked. The
PT WAIT UNTIL() condition can be any conditional statement, including Boolean expressions.

A protothread is stackless meaning that a protothread does not have a history of function invocations.
Instead, all protothreads in a system run on the same stack, which is rewound every time a protothread
blocks.

A protothread runs inside a single function. A protothread is driven by repeated calls to the function
in which the protothread runs. Because they are stackless, protothreads can only block at the top level
of the function. This means that it is not possible for a function call to block inside the called function -
only explicit PT WAIT UNTIL() statements can block. Nevertheless, by using hierarchical protothreads,
it is possible to perform nested blocking.

The beginning and the end of a protothread are declared with PT BEGIN and PT END statements.
The protothread code starts executing after the PT BEGIN statement and ends at the PT END state-
ment. Protothread statements, such as the PT WAIT UNTIL() statement, must be placed between the
PT BEGIN and PT END statements. A protothread can exit prematurely with a PT EXIT statement.
Statements outside of the PT BEGIN and PT END statements are not part of the protothread and the
behavior of such statements are undefined by the protothreads mechanism.

Protothreads can be seen as a combination of events and threads. From threads, protothreads have
inherited the blocking wait semantics. From events, protothreads have inherited the stacklessness. The
main advantage of protothreads over traditional threads is that protothreads are very lightweight: a
protothread does not require its own stack. Rather, all protothreads run on the same stack and context
switching is done by stack rewinding. This is advantageous in memory constrained systems, where a
thread’s stack might use a large part of the available memory. For example, a thread with a 200 byte stack
running on an MS430F149 microcontroller uses almost 10% of the entire RAM. In contrast, the memory
overhead of a protothread is as low as two bytes per protothread and no additional stack is needed.

The protothreads mechanism does not specify a specific method to invoke or schedule a protothread;
this is defined by the system using protothreads. For example, protothread application programs running
on top of the uIP TCP/IP stack are invoked every time a TCP/IP event occurs and when the application is
periodically polled by the TCP/IP stack. Similarly, in the event-driven Contiki operating system a process’
protothread is invoked whenever the process receives an event. The event may be a message from another
process, a timer event, a notification of sensor input, or any other type of event that the system supports.

Protothreads can be seen as blocking event handlers. Normally, an event handler must explicitly return
to the caller after processing the event. In contrast, by implementing an event handler as a protothread,
the code in the event handler can use the PT WAIT UNTIL() statement to perform conditional blocking.
The underlying event dispatching system does not need to know whether the event handler is a protothread
or a regular event handler.

Multi-threading In Contiki, multi-threading is implemented as a library on top of the event-based kernel.
The library is optionally linked with applications that explicitly require a multi-threaded model of operation.

c©Embedded WiSeNts consortium: all rights reserved page 55

Embedded WiSeNts Research Integration: Platform Survey

The library is divided into two parts: a platform independent part that interfaces to the event kernel, and
a platform specific part implementing the stack switching primitives. In practice, very little code needs to
be rewritten when porting the platform specific part of the library. For reference, the implementation for
the MSP430 consists of 25 lines of C code.

Unlike normal Contiki processes each thread requires a separate stack. The library provides the necessary
stack management functions. Threads execute on their own stack until they explicitly yield.

Initial versions of the Contiki multi-threading library had optional preemptive multi-threading. However,
as this feature was not used by application programs, the feature was removed for subsequent versions of
Contiki.

4.3.3 Basic OS Services

Hardware abstraction The Contiki core code base provides abstractions for a number of hardware
devices typically found on sensor network platforms: radio, LEDs, flash ROM, EEPROM, SPI, UART,
RS232, watchdog timers, and external memory. Additionally, there are several abstraction modules that
are under development as part of particular ports of Contiki to specific hardware platforms. As these
abstraction modules mature they may be moved up to the Contiki core code base. Examples include
hardware interrupt management and sound emitter hardware.

Additionally, there are a number of abstractions for sensor hardware that currently is under development
as part of Contiki ports to the ESB and Telos Sky platforms. Examples include temperature sensors, passive
IR sensors, radio signal strength sensors, vibration sensors, light sensors, sound sensors, and battery level
sensors.

Timers Contiki provides two types of timers: timers with the ability to post events called etimers and
timers without any event-posting ability. Event-posting timers are used by application programs who get
an event when a timer has expired. Timers without event-posting ability are used in interrupt handlers
from which events cannot be posted. Such timers also incur less overhead in terms of execution time.

Contiki timers are one-shot, meaning that a timer expires only once after being set. If a periodical
expiration behavior is wanted, the application program must implement this by itself. The Contiki timers
support this by providing a way to reset a timer so that its expiration time is set relative to the last
expiration time. This ensures that periodical timers do not drift because of the time between the actual
timer expiration and the time of the reset operation.

Memory management Contiki supports two forms of memory management: memory block allocation
and managed memory allocation. With memory block allocation a program defines a number of fixed size
blocks that the program should be able to allocate during run-time. The memory for the memory blocks is
statically allocated at compile time which means that the application program can be sure that memory is
always available. The memory for the memory blocks cannot be accessed by other applications. Memory
is not automatically deallocated, but must be explicitly deallocated by the application program.

While memory block allocation is a simple yet very useful mechanism, there are situations in which the
memory is not efficiently utilized. For instance, when the memory usage of an application program varies
over time, it may be advantageous to let other parts of the system have access to the memory when the
program does not itself use it. This is when the managed memory allocator is useful.

c©Embedded WiSeNts consortium: all rights reserved page 56

Embedded WiSeNts Research Integration: Platform Survey

The managed memory allocator has a single pool of memory from which all application programs in a
system can allocate memory. The allocated memory does not need to be of fixed size, but each allocation
can be a different size. To avoid fragmentation, the managed memory allocator uses a compaction
mechanism. Every time memory is deallocated, there is risk of fragmentation of the available memory.
The managed memory allocator then compacts the allocated memory by moving the allocated memory so
that any holes in the memory heap are removed. Since an application program cannot be sure that the
allocated memory is at a fixed position, all access to managed memory goes through a special function,
implemented as a C macro for performance reasons, that returns the actual memory position of the
allocated memory.

Sensor primitives The sensor module in Contiki provides an abstract interface for the hardware sensors
of an underlying platform. The interface has five functions that can be called from an application program:
activate, deactivate, value, configure, and status. The Contiki system calls the init function of a sensor
during system startup. Additionally, the interface has an irq function that a hardware device driver uses if
the sensor uses a hardware interrupt.

An application program that activates a sensor gets sensor events every time the sensor changes value,
if the sensor is configured to do so. Not all sensors have semantics that work well with such an interface,
however. Examples include temperature sensors that an application program might wish to periodically
query rather than to wait for a change in value. The sensor can then be configured to not send events,
but to only report its value if the sensor’s value function is called.

When sensors are deactivated, the sensor API has support for turning off the power to the sensors, thus
conserving energy of the sensor board.

Communication primitives There are no standard communication primitives in Contiki as of yet because
this area currently is under development. However, the current development seems to converge towards
using the Contiki service mechanism to achieve independence of the actual protocols or mechanisms that
implement a particular communication service. There currently are implementations of a number of routing
protocols, including tree flooding, convergecast, and AODV.

The Contiki convergecast routing service illustrates how the Contiki service API is used to achieve a
separation of a communication service and its implementation in terms of network protocols. Convergecast
is a network service that transports data from the fringe of the network towards a central sink node. How
the data messages finds their way from the network fringe towards the sink is defined by the network
protocol used. To be able to use different kinds of convergecast protocols, the Contiki convergecast
service does not define the actual protocol but only provides an abstract programming interface that
applications can use. A convergecast protocol that implements the programming interface is then called
upon to perform the actual transmission and routing of data messages.

The convergecast service defines a simple programming interface that supports three major functions:
send, listen and unlisten. The send function sends out a message from a fringe node towards the sink.
The listen function is used by a sink node to specify an interest for a particular type of data. Similarly,
the unlisten function is used to deregister an interest for a data that has previously been registered with
listen. In addition to the three basic functions, the service provides functions for configuring parameters of
the service and for querying the status of the underlying routing protocol. To implement the convergecast
service, a network protocol needs only implement the functions in the application interface.

c©Embedded WiSeNts consortium: all rights reserved page 57

Embedded WiSeNts Research Integration: Platform Survey

4.3.4 Service support

MAC The ESB port of Contiki includes a simple MAC protocol for the TR1001 radio chip but there are
no generic MAC protocols in the Contiki code base.

Routing There currently are implementations of a number of routing protocols in Contiki, including tree
flooding, convergecast, and AODV. There is ongoing work on adding more routing mechanisms to Contiki.

Localization The Contiki code base does not include any localization protocols. However, there are
localization mechanisms implemented on top of Contiki that have been developed in other projects and
these implementations may be included in the Contiki code base.

Synchronization There are no synchronization mechanisms provided by Contiki, but there is ongoing
work on implementing such services.

4.3.5 Programming Environments

Contiki is written in the C programming language and can be compiled with any C99-compliant C compiler.
Contiki has been ported to a number of different C compilers and being compliant across C compilers is
an expressed design decision.

4.3.6 Testing and Debugging Tools

Since the beginning, Contiki has always been focused on being able to develop code without having to
work directly on the target system. This significantly reduces development time and makes software
development, testing, and debugging easier.

Contiki supports three levels of off-target development: host environment, simple network simulation,
and full network simulation. Under the host environment development environment, the entire Contiki OS
and the program under development are compiled to run on the host on which the development is taking
place. That is, the entire Contiki OS runs as a user process under e.g. Linux, FreeBSD, or MS Windows.
The OS and its programs can then be debugged using standard host debugging tools such as GDB.

Since the host environment does not include any network simulation, development of software that
requires network interaction is not immediately possible. The simple network simulation environment adds
a rudimentary network simulator to the host environment which allows for simulation of networks of Contiki
nodes. Each node runs the Contiki OS and its underlying programs as a separate host process under Linux,
FreeBSD, or MS Windows. Network concurrency can thus be simulated: each node runs independently
The nodes may communicate with each other using a simulated radio interface. The simulation of the
radio medium is very simple: packets does interfere with each other if the sending nodes are placed too
close to each other. It is also possible to add random packet drops. These two features allows the software
developer to test software under network conditions that are slightly more realistic than a non-loss radio
environment is.

The simple network simulation environment features a simple graphical user interface that shows all
simulated nodes in a square grid where nodes appear as dots and radio traffic appear as circles where the

c©Embedded WiSeNts consortium: all rights reserved page 58

Embedded WiSeNts Research Integration: Platform Survey

radius of the circle is the range of the simulated radio transmission. The user can click in the grid to
produce sensor input to the simulated nodes.

Finally, the full network simulation environment called COOJA [st06], which is still under active devel-
opment, provides a deterministic and flexible environment for testing and developing software for Contiki.
COOJA provides a significantly more advanced simulation of radio propagation effects and allows for
multiple radio interfaces on the nodes.

When the software has been debugged in one of the simulation environments, the code can be tested
on the target platform. Our experience is that this way of doing development is much easier than to do
all development directly on the target platform. The initial development done under a simulation has a
much shorter compile-test-debug cycle than direct on-target development.

4.3.7 Support

Documentation The Contiki source code is well-documented with in-line comments that are compiled
into HTML and PDF documentation. The documentation can be either browsed with a web browser or
printed out in book form. In book form, the documentation currently (April 2006) comprises over 200
pages.

The documentation consists both of description of individual functions, with their arguments, return
values and side-effects, and of tutorial-style examples of how the Contiki modules are to be used.

Tutorials There are user tutorials under development, mostly within the Runes project [Pro].

Community There is currently no organized community around Contiki.

Licensing Contiki is distributed under a 3-clause BSD-style open source license that allows for unre-
stricted commercial and non-commercial use.

4.3.8 Experience

We have experienced that protothreads drastically simplify programming sensor nodes by offering a condi-
tional blocking wait operation. Protothreads are also the basis of the protosocket interface. Protosockets
provide an interface to uIP similar to the traditional BSD socket interface. The combination of pro-
tothreads and the protosocket interface make it possible to write network programs that are structured in
a linear way, built around conditional blocking calls to the protosocket interface. Experience has shown
that these abstractions simplifies the implementation of e.g. asynchronous protocols.

We have developed several applications on top of the Contiki operating system. Our experience is that
using the process-model that Contiki provides (internally using protothreads) in combination with IP-based
communication primitives greatly simplifies application development. For example, different protocols can
easily be implemented as separate processes that open different IP ports. This makes the usage of the
blocking wait statement even more simpler. The blocking wait statement for reception of a packet is only
satisfied on reception of a packet to the right IP port. For example, adding a code update protocol involves
mainly only a adding a new process that communicates using an unused port.

c©Embedded WiSeNts consortium: all rights reserved page 59

Embedded WiSeNts Research Integration: Platform Survey

4.4 BTnut

BTnut is a lightweight, C-based operating system that provides the necessary software support to the
BTnode hardware platform (presented in section 3.4). BTnut is built on top of Nut/OS, a simple,
general purpose operating system for embedded devices15 Nut/OS, licensed for both commercial and
non-commercial applications under the BSD license.

The Nut/OS core, some BTnode-specific drivers and the Bluetooth stack for the on-board Bluetooth
radio are the three pieces that constitute the BTnut system software. In the remainder of this section, we
will provide a brief overview on the most significant characteristics of the BTnut system software.

Interested readers can refer for more information to the Nut/OS manuals and API specifications16 as
well as to the several works published by the BTnode/BTnut developers [BKM+04, BDH+04, KL01].

4.4.1 BTnut Core Functions

The BTnut core supports event-driven threads scheduling, offers primitives for basic memory management,
synchronization, streaming I/O, and provides low-level device drivers.

The BTnut system software uses plain C-based programming and is based on standard operating system
concepts, familiar to most developers. The operating system also offers a modular design, so that only
needed parts are linked together and no unneeded parts are loaded into the limited program space of the
target hardware platform (e.g., the BTnode).

Concurrency Model BTnut implements cooperative multi-threading. Since a single CPU can’t run more
than one thread at a time, BTnut provides scheduling and context switching services in order to allow a
concurrent execution of several threads.

Threads in BTnut are labelled with a priority value (ranging from 0 to 255) that indicates how urgently a
thread need to be executed. The thread with the lowest priority value is the most urgent and thus the one
on the top of the priority ordered queue, in which all threads are put when waiting for execution. The most
urgent thread is always run, unless it is waiting for an event to be generated. When a thread is running, it
is not bound to a fixed time frame and can thus rely on not being stopped unexpectedly during execution,
unless an interrupt signal is originated by the CPU. Thus, threads yield resources either when they have
to wait for an event, or when they receive a CPU interrupt signal. To work properly, this non-preemptive,
cooperative scheduling scheme requires individual threads to frequently and spontaneously (even if not
waiting for an event) yield control of the CPU, in order to allow other threads to be executed too.

Threads in BTnut are all executed within the same address space and use the same hardware resources.
This significantly reduces the overhead related to switching context whenever a thread yields resources
to allow other threads to be executed. When a context switch occurs, the function NutThreadSwitch()
stores the content of the 32 CPU registers on the stack and stores the correspondent stack pointer for
retrieving the execution at a later point. Then, the stack pointer of the thread to be started is loaded and
the CPU register are initalized with the correspondent values in this stack.

15Nut/OS is part of the Ethernut open source hardware and software platform for embedded, ethernet-enabled de-
vices (www.ethernut.de). A TCP/IP protocol suite named Nut/Net and Nut/OS constitute the Ethernut software
platform. Nut/OS has been adopted by the BTnode developers for building the core of the BTnut system software.

16www.ethernut.de/en/documents/index.html

c©Embedded WiSeNts consortium: all rights reserved page 60

Embedded WiSeNts Research Integration: Platform Survey

As already stated, threads keep executing as long as they are not forced to wait for some event to
happen elsewhere, or they are interrupted by the CPU. We briefly summarize the two concepts of events
and interrupts in BTnut:

• Events Events are a fundamental concept of the NutOS operating system. When a running thread
needs to wait for an event to happen before continuing to execute, it yields its resources and lines-up
in an event queue. Consequently, the next thread in the priority queue will be executed (if it’s not
waiting for an event to be posted). Waiting threads will continue with their execution as soon as the
event they were waiting for will be posted to the event queue by another (running) thread. Threads
synchronization is achieved through this interaction between running and waiting threads. When
all threads are waiting for an event to happen, the idle thread (which has lowest priority) will be
executed.

• Interrupts The cooperative, multi-threading nature of BTnut can be broken only by CPU interrupts.
Interrupt routines are executed immediately after being called, even if the currently running thread
is not willing to yield the CPU. The interrupted thread will continue with its execution as soon as
the CPU finishes running the interrupt routine.

If parts of the code of a thread need to be executed without being interrupted, interrupts may be
(temporarily) disabled by clearing the interrupt enable flag.

4.4.2 Basic OS Services

Hardware Abstraction The BTnut system software relies on the hardware abstractions provided by
the Nut/OS operating system. Nut/OS provides drivers to access physical hardware. The drivers’ code
is divided into a general part and a hardware dependant part, to simplify porting the code to different
physical chips. Support is provided by Nut/OS for several standard data buses like UART/USART, SPI,
I2C, for the ADC converters, as well as for clock, timers and LEDs.

Timers BTnut provides both one-shot and periodic timers, as well as several primitives for timer han-
dling. Among others, functions for initializing system timers, starting and stopping asynchronous timers,
temporarily suspending the current thread, and the determination of the CPU speed are available. In previ-
ous versions of BTnut, timer events were processed in the timer interrupt routines, but are now processed
during thread switches, thus reducing the number of hardware interrupts during execution.

To support the cooperative multi-threading scheme described above, threads in BTnut can yield CPU
control by putting themselves into a “sleep”-state for an integral number of system clock ticks. A clock
tick occurs every 1 ms by default, but may vary depending on the configuration and can be set up to 62.5
ms.

Memory management BTnut provides dynamic heap memory allocation. The so-called free-list pro-
vides a linked list of all unused blocks of memory which are dynamically allocated to host threads execution
environments. The amount of stack space a thread can occupy during its execution must be specified at
compile-time by the programmer. Typically, a maximum size for stack space must be estimated, but 512
or even 256 bytes of stack are enough for most applications threads. However, to reduce the risk of stack
overflow, some bytes should be added to the estimated maximum size. The number of bytes available on

c©Embedded WiSeNts consortium: all rights reserved page 61

Embedded WiSeNts Research Integration: Platform Survey

the heap can be easily retrieved by calling the NutHeapAvailable() function. For the main thread BTnut
allocates by default 768 bytes of stack, which is far more than most applications use. To allocate and
release memory blocks, standard C calls to malloc and free can be used. The heap-manager allocates
memory blocks keeping the free-list as unfragmented as possible, thus ending up with few large blocks of
unused memory rather than with many small fragments.

Sensor primitives The Nut/OS operating systems does not provide support for sensing tasks. Sensing
device drivers must thus be written as BTnut expansions or as part of an application. Device drivers
for both the ssmall and BTsense sensor boards are available as part of the standard BTnut software
distribution. Functions for initializing the sensor hardware during system startup and reading sensor data
are provided.

Communication primitives There are no standard communication primitives in BTnut yet, but basic
communication services are available for both the Bluetooth radio and the Chipcon radio the BTnode
platform is equipped with.

The HCI, L2CAP and RFCOMM layers of the Bluetooth stack have been implemented for the BTn-
ode/BTnut platform17, and are fully functional. BTnut devices can connect and disconnect to and from a
piconet, send and listen to messages, enabling the development of Bluetooth-based applications upon the
BTnode/BTnut platform.

Furthermore, using the L2CAP connectionless data channel, a connectionless multi-hop layer has been
recently implemented. Higher layer services can easily call the function mhop cl send pkt to send
connection-less multi-hop packets to a specific specific service on the target device. To send packets
from hop to hop, the multi-hop layer encapsulates multi-hop data into L2CAP connection-less packets.
Forwarding of a packet to its destination node is done by broadcasting or by consulting forwarding tables
maintained by each node in the network: if a destination can’t be found in the forwarding table, the packet
is broadcasted to all directly connected devices, except to the directly connected device the packet was
received from. On the other hand, routing (i.e. updating the forwarding tables on each node) is done by
storing the source node’s address of an incoming packet together with the connection handle the packet
was received on in the forwarding table (source recording). Incoming packets having a target address
that match to one of the entries in the forwarding table are then forwarded directly to the corresponding
connection handle - instead of being broadcasted.

For the Chipcon Radio CC1000 a standard driver is available for sending and receiving packets. Addi-
tionally, more reliable custom drivers are currently under development.

Stream I/O BTnut provides the Nut/OS I/O library, which overrides the functions of the (standard)
compiler’s runtime library. The streaming I/O is interrupt driven and stream devices use input and output
buffers to read/write data.

17We would like to point out that the Bluetooth stack for the BTnode has been written taking care of the peculiar
constraints of this platform. For instance, the stack has been developed to have a small memory footprint and to
be simple, because of limited available memory and processing power. The stack is however compliant with the
Bluetooth standard specifications.

c©Embedded WiSeNts consortium: all rights reserved page 62

Embedded WiSeNts Research Integration: Platform Survey

4.4.3 Service support

MAC The BTnode platform features two independent wireless communication modules, the Bluetooth
module and the Chipcon CC1000 radio module. The Bluetooth MAC functions are supported by the
hardware Bluettoth module featured by the BTnode platform. An implementation of the B-MAC [PHC04],
a low power media access scheme for wireless sensor networks, is available for the Chipcon radio in the
BTnut system software.

Routing Very recently, a connectionless multi-hop layer, has been implemented for the Bluetooth radio
and is now part of the BTnut API. Nodes routes packets through the network updating packet forwarding
tables.

A basic flooding algorithm for the Chipcon radio module is also currently being implemented by BTnut
developers.

Localization Localization services are not (yet) provided by the BTnut system software.

Synchronization Time synchronization is supported in BTnut through packet time-stamping. Higher
level time synchronization services are not (yet) provided by the BTnut system software.

4.4.4 Programming Environments

For basic software development, BTnut programmers will need an editor, a compiler18, the BTnut standard
libraries and an ISP (In-System Programming) software to upload compiled applications to the BTnode
flash memory. A CD-ROM containing all tools, documentation and BTnut system software required for
development and evaluation work on the BTnode platform is delivered when purchasing BTnode hardware.
An ISO image of this CD is however also available as a free download from the BTnode website [BTna]. The
software development tools can be easily installed on top of the Windows, Linux or on Mac OS operating
systems. A windows installer as well as packages for an easy installation on several Linux distribution and
on Mac OS are available.

The most recent releases of the BTnode system software can be downloaded at any time from source-
forge.net 19.

Testing/Debugging Tools When running under investigation, a BTnut library can be added to applica-
tion code in order to trace events while the application is running. Events can be logged on the EEPROM
for off-line inspection with a microseconds time resolution, s.t. also the behavior of interrupt routines can
be observed.

The BTnode/BTnut platform also hosted the first implementation and the subsequent development
of the Deployment-Support Network (DSN), a tool for supporting the development, debugging, moni-
toring, and testing of sensor networks algorithms and applications. For further information about the
implementation of the DSN please refer to the BTnode Website [BTna] and the related publications
[RR05b, BDMT05, RYR06].

18E.g., BTnut applications can be compiled using the free AVR-GCC compiler, a special build of the well-known GNU
Compiler Collection.

19http://sourceforge.net/project/showfiles.php?group id=81773

c©Embedded WiSeNts consortium: all rights reserved page 63

Embedded WiSeNts Research Integration: Platform Survey

4.4.5 Support

The BTnut system software is a well-documented, open source project. The BTnut API comes along with
some example applications that, together with the hardware specifications and a set of useful tutorials20,
allow a gentle learning curve into the BTnut software. A very active developers community and its mailing
list21 also provides a rich source of information.

4.4.6 Experiences with the BTnut System Software

General Once the BTnode hardware has been purchased, getting the first application running will typi-
cally take just few hours. The software development tools can be easily installed on top of the Windows,
Linux or on Mac OS operating systems. A windows installer as well as packages for the installation on
several Linux distribution and on Mac OS are delivered within the BTnut software distribution.

The installation is a three-step process, that first requires to install the tool-chain, then the BTnut
system software, and finally to build and upload a sample application. Sample applications showing,
among others, how to operate the radio modules and how to access sensor data are provided within the
BTnut software system.

Memory Footprint The modular design of the BTnut system software allows to keep its memory foot-
print on the target hardware platform as small as possible. When compiling a BTnut program, only needed
parts are linked together and thus no unneeded parts are loaded into the limited program space of the
target hardware platform. For example, a program that causes the green led of the BTnode platform blink
requires about 7 Kbytes, while a more complex application that reads sensor measurements, actuates a
buzzer, writes data on the EEPROM and communicates through the Chipcon radio, requires about 50
Kbytes of memory space.

The use of multithreading is typically inefficient in terms of memory usage. However, the memory space
provided by the Bnode platform, on which the BTnut system software has been extensively tested, proved
to be ample enough for implementing typical sensor network applications.

Programming Experiences Developing applications with BTnut is easy for most educated programmers,
since it requires knowledge of standard C, and allows the use of threads. Since no new programming
language must be learnt, the first BTnut application can be written within few hours: the programmer
only needs to get familiar with the BTnut libraries.

Programs can be uploaded to the CPU Flash memory using the AVRDUDE driver22, a full featured
FreeBSD Unix program for programming Atmel’s AVR CPU’s. The driver performs very well when used
on most Linux systems, though it may give some troubles when used on Windows. Please refer to the
Btnode Website23 and to the mailing list for more details on this issue.

20The BTnut API, the BTnode hardware documentation, and beginners tutorials are available from the BTnode project
web site [BTna]

21Mailing-list archive available at: http://lists.ee.ethz.ch/btnode-development/
22For more information please refer to www.bsdhome.com/avrdude or to the BTnode Website [BTna]. It is recommended

to use the AVRDUDE driver and not the UISP tool for uploading programs to the BTnode platform.
23Especially the “Tips & Tricks” section: www.btnode.ethz.ch/Documentation/TipsAndTricks

c©Embedded WiSeNts consortium: all rights reserved page 64

Embedded WiSeNts Research Integration: Platform Survey

4.5 AmbientRT

AmbientRT [HDJH04] is a Real-Time Operating System for embedded devices with very limited memory,
processing, and energy resources, such as wireless sensor networks. The kernel size implemented on a
MSP430 processor is 3800 bytes, and the kernel itself needs 32 bytes of RAM.

Some of powerful features of AmbientRT include, real-time scheduling, online reconfiguration, and sup-
port for a modular data driven architecture. Where other operating systems for tiny embedded applications
offer configuration only during compile time, AmbientRT is a dynamic system that is able to adapt its
functionality to create the most efficient configuration for every situation.

AmbientRT uses lightweight RT scheduling and dispatching based on pre-emptive Earliest Deadline First
(EDF). Furthermore, with the module support in AmbientRT, applications can be defined as modules,
compiled off-line and dynamically inserted, or removed, in binary format. Firmware can now be upgraded
by replacing only certain parts, instead of the complete binary. This simplifies the upgrade process, and it
limits the use of precious energy.

4.5.1 Real-time Scheduler

AmbientRT has an RT-Transactions EDFI scheduler [JMHS03]. EDFI is a lightweight preemptive real-
time scheduling algorithm theoretically proven to be deadlock free. Mutual exclusion of shared resources
is enforced by the scheduler itself. Through analysis of a given task-set a guarantee on meeting the real
time constraints for each task can be given.

The real-time scheduler in AmbientRT uses dynamic priorities. This means that the priority of a task
relative to the priorities of other tasks changes over time. The scheduler uses the absolute deadline as the
priority of a task. The task with the earliest absolute deadline has the highest priority.

Figure 8 shows an example of two tasks being scheduled. Task B is running since rB when an event
causes task A to be selected for scheduling. The release time of A is rA. Because the absolute deadline
of task A (dA) is earlier than the one of task B (dB), task A is of higher priority and is assigned to the
processor. After task A finishes, task B completes its operation.

The impact of using dynamic priorities can be seen in Figure 9. In this case the duration of task B is
extended and the event that causes task A to be scheduled comes later. Although task A has a smaller
deadline (DA < DB), it has a later absolute deadline (dA > dB), and is therefore of lower priority than
task B. If static priorities should have been used here, task B would have been suspended by task A and
wouldn’t have completed on time. Using the absolute deadline as the priority in general, leads to a better
utilization of the processor than when fixed priorities are used.

4.5.2 Concurrency Model

Context switching is a demanding mechanism in processing power, as well as in memory usage. The
advantage of the AmbientRT kernel is that the tasks in the system all share a single stack. Because of
this the context of a task doesn’t have to be saved somewhere else but can be left on the stack itself. If
a task is preempted the new context will be created just on top of the old one. Restoring a context only
occurs when the running task exits and a preempted task continues. The task that will continue is always
the task that has its context directly below the running task, and therefore restoring a context is nothing
more than removing the context of the running task.

c©Embedded WiSeNts consortium: all rights reserved page 65

Embedded WiSeNts Research Integration: Platform Survey

Figure 8: Scheduling two real-time tasks I

Figure 9: Scheduling two real-time tasks II

c©Embedded WiSeNts consortium: all rights reserved page 66

Embedded WiSeNts Research Integration: Platform Survey

Figure 10: Scheduler task state transition diagram

In AmbientRT a task can be in several states. Figure 10 illustrates the state transition diagram of a
task. Every task is created in the waiting state, in which the task will wait until an event causes it to
be transferred to the released state. A task in the released state must run on the processor as soon as
possible. The scheduler assigns the processor to the task in the released state with the highest priority.
This task is then transferred to the running state. When a task is in the running state and a new task is
transferred to the released state, the priority of the new task is compared with that of the running task.
If the new task has a higher priority, then the running task will be preempted, or paused. The old task is
transferred to the preempted state, and the new task will transfer to the running state. When a task in
the running state finishes, it will be killed and moved back to the waiting state. The scheduler will then
compare the highest priority preempted task to the highest priority released task. If the preempted task is
of higher priority, it is moved back to the running state where it will continue its operation. If not, the
released task will be moved to the running state. At all times, on a single processor platform, only one
task can be in the running state.

4.5.3 Resource Synchronization

Resources are elements that can be used by different tasks. A resource can be a variable or a data structure,
or a hardware device like a serial port or an LCD display. In order to preserve the integrity of a resource

c©Embedded WiSeNts consortium: all rights reserved page 67

Embedded WiSeNts Research Integration: Platform Survey

in a multitasking system, it must be prevented that two tasks sharing the same resource, have access to
it at the same time. A mutual exclusion mechanism avoids this concurrent use of un-shareable resources.

Mutual exclusion in the AmbientRT kernel is obtained through the scheduler. It provides automatic
synchronization of shared resources. The scheduler compares on initialization the resource usage lists of
every task and generates per task, on basis of the relative deadlines, a threshold value. Comparing this
threshold value of a task to the deadline of another indicates whether they share a resource. When the
scheduler determines which task is allowed to run it will not only compare the dynamic priorities of the
tasks, but also the threshold of the running task to the deadline of the candidate task. If they share a
resource, the scheduler will first let the running task finish even if the candidate task has an earlier deadline.
In this last situation the candidate task is blocked by the running task, and the added delay because of
this is called the blocking time.

Figure 11: Scheduling two tasks that share a resource

This mechanism is illustrated by Figure 11. In this case task A and B share a resource. This time, when
the event occurs, the scheduler let task B finish first. After task B is done, the scheduler runs task A. The
blocking time is indicated by BB,A.

4.5.4 Real-time guarantees

AmbientRT offers hard real-time scheduling. This means that the system is designed in such a way that
for a given set of tasks a mathematical analysis is performed that calculates whether the set is feasible or
not. If the set is feasible and is scheduled by AmbientRT it is guaranteed at all times that every task will
finish before its deadline.

c©Embedded WiSeNts consortium: all rights reserved page 68

Embedded WiSeNts Research Integration: Platform Survey

4.5.5 Data centric architecture

The kernel supports a data centric architecture. Such an architecture enables the application to dynamically
reconfigure its functionality. The main differences of the data centric architecture to a static configured
application is that the functional building blocks are centrally coordinated, and that these blocks are
loosely coupled (meaning that a block has no hard coded connections to other blocks). The component
that coordinates the blocks can make and break virtual connections between them like an old-fashioned
style telephony patch station. Rearranging the connections will create different configurations, making the
system functionally adaptable.

In the data centric architecture, functionality is divided in data producing and consuming components
called Data Centric Entities (DCE). Data is a generalization of memory objects and events, where an event
is for example the occurrence of a hardware interrupt. Each distinct memory object or event is called a
Data Type (DT). The DCEs are used in a publish/subscribe system that allows them to react to DTs
produced by others. New configurations can be achieved by altering the set of active DCEs and modifying
their subscriptions.

The AmbientRT kernel enables the data centric architecture through its data manager. The data
manager keeps track of data with the use of a DT table. Every entry in the table holds the contents of the
DT and the list of entities that are subscribed to it. The data manager also regulates the (de)activation of
DCEs. When a DCE publishes a collection of data types, the data manager will lookup all the subscribers
and activate them.

4.5.6 Dynamic Loadable Modules

Modules are blocks of software that are not part of the operating system itself. The kernel can load
and run modules dynamically. Because of the data centric architecture, these modules can be inserted
in the configuration during runtime. In this way, AmbientRT is able to support reconfiguration based on
functionality becoming available even after device deployment.

A Dynamic Loadable Module (DLM) is a task compiled separately from the kernel code. A DLM can
be loaded and executed anywhere in program memory, which makes it the building block for creating new
configurations online. With this module support in the operating system, modifications to an application
can be done more efficient. Instead of updating the complete application only a subset of the modules
making up the task-set has to be changed, resulting in less data traffic and thus less energy consumption.
Another advantage is that it allows nodes in a network to be heterogenous in the software point of view,
resulting in less occupied memory space and better dedicated operation possibilities.

A ready DLM is transferred to the target hardware through for example the radio or the serial port where
on arrival it is stored in the secondary storage. For the communication a packet protocol is provided. This
protocol divides the DLM into small packets which are uploaded individually so that the node can store
it temporary in RAM before writing it to the secondary storage. When the node successfully received a
complete packet, the sender will send the next packet. The protocol can be used for any type of binary
that has to be uploaded to the secondary storage. A low complexity file system is used for creating, and
keeping track of files representing the received binaries in the secondary storage.

c©Embedded WiSeNts consortium: all rights reserved page 69

Embedded WiSeNts Research Integration: Platform Survey

4.5.7 Hardware Abstraction

AmbientRT abstracts the hardware for its client by creating a Hardware Abstraction Layer (HAL). The
HAL is a collection of drivers that each provide an abstracted access method to specific hardware devices.
For a shorter learning curve and portability, AmbientRT adopts the Portable Operating System Interface
(POSIX) standard for accessing devices. With POSIX each device can be accessed through the filesystem
using the normal file operations. This will give the client a standardized method of device access while
not overflowing it with enormous amounts of different API functions.

4.5.8 Command Shell

The operating system comes with a shell task that can be used to execute commands on the device.
When connecting the device to the serial port of a PC and running a terminal emulation program the shell
provides a command line interface.

4.5.9 Licensing model, community support and documentation

At the moment two versions of AmbientRT is offered by Ambient System B.V. [Amba]. The FREE version
is called AmbientRT Demo, which is fully operational, yet has some restrictions, such as limited number
of tasks and heap space. AmbientRT full version has all features, and comes with sample device drivers
with source code.

AmbientRT is based on a site license, which means that you can use the system for every product you
develop without having to pay additional licenses. For non-commercial applications, universities can use
the system for free.

c©Embedded WiSeNts consortium: all rights reserved page 70

Embedded WiSeNts Research Integration: Platform Survey

5 Service distributions

In addition to sensor hardware and operating systems, there is some common functionality that is found
in higher layers of the communication stack or in middleware elements.

This section of the report

• higher-layer communication protocols

• sensor querying mechanisms

• sensor reprogramming

5.1 Communication stacks

We present two communication stacks.
The first is LMAC MAC layer. The extent to which MAC layer functionality is portable naturally depends

on the functionality that the underlying PHY layer is required to export.
The second is µIP. By contrast, like any TCP/IP stack, the µIP TCP/IP stack has been ported to many

platforms and is RFC compatible. The direct use of TCP/IP in sensor networks allows a sensor network to
be connected to the Internet without use of specialized gateways. However, an extremely memory efficient
implementation is needed to fit the resource constraints of the sensor hardware.

5.1.1 LMAC protocol

The LMAC protocol is based upon scheduled access. Each node gets periodically a time interval in which it
is allowed to control the wireless medium according its own requirements and needs. Outside this interval,
nodes are notified when they are intended receivers. When a node is not needed for communication, it
switches its transceiver to standby and is hence able to conserve energy.

Schedule-based MAC protocols have the advantage that nodes are never using their power consuming
transceivers, while not needed and hence this type of medium access has good foresight in being energy-
efficient. Since each node gets its own turn in using the medium, there will be little collision of messages
which is in other types of MAC methods—such as carrier sense multiple access (CSMA)—one of the main
reasons for energy waste.

Of course, any protocol requires some overhead to function properly, as is the case with schedule-based
MAC protocols. Nevertheless, the philosophy of the designed MAC protocol is to keep it simple, to group
transmissions and thus save energy consumption on physical layer overhead and to make it robust to
function completely autonomously in a distributed environment.

Currently, the protocol has been implemented on sensor node prototypes, using a program memory
footprint of 3.4 kBytes and 550 bytes RAM (including message queues and neighbor table).

When a node has some data to transmit, it waits until its time slot comes up, addresses a neighboring
node (or multiple) and transmits the packet without causing collision or interference to other transmissions.

In order to be capable of receiving messages, other nodes always listen at the beginning of time slots
of other nodes to nd out whether they are addressed either by node ID or by broadcast address. In the
LMAC protocol, nodes can receive multiple data messages per frame, but are only allowed to transmit

c©Embedded WiSeNts consortium: all rights reserved page 71

Embedded WiSeNts Research Integration: Platform Survey

once per frame. A higher layer in the protocol stack should combine data fragments into one message for
transmission whenever possible.

A time slot is further divided into two parts of unequal length: control message (CM) and data message
(DM). Between the CM and DM is a small gap, which allows the MAC layer to process the just received
CM.

The distributed algorithm LMAC uses is as follows. When a node joins the wireless network, it needs to
find out which time slot to control, before it can start sending data and participate in networking. This
procedure of finding a time slot can be implemented completely localized and distributed.

First step for a node is to determine which time slots in a frame are already in use, either by direct
neighbors or by nodes that are outside transmission range, but would be troubled by interference of the
node. We will call time slots not belonging to this set ”free” time slots.

Remember that each node already present in the network, broadcasts a CM in its time slot. By just
listening to an entire frame, the new node in the network is aware of all its first order neighbors—even by
ID. Every node in the network continuously gathers this local time slot usage information and transmits
it in its occupied slots field in the CM. This allows a new node in the network to obtain a two-hop view
of the network, providing enough information to create a list of free time slots from which the node can
choose any. For now we assume that a node chooses a random time slot for the list of free ones.

The above described algorithm is very simple to implement. When a node finds a neighbor transmitting
in a certain time slot, it inserts a ’1’ in the occupied slots bit vector at the respective position for the time
slot otherwise a zero is inserted at the position. To obtain a list of free time slots, a node simply needs
to ’OR’ all received occupied slots bit vectors that were transmitted in the frame. A ’0’ in the resulting
vector means that the time slot is considered free in a two hop region and a ’1’ that a time slot is already
taken by a first or second order neighbor. This ensures a spatial time slot re-usage after no less that three
hops.

Synchronization Key issue in scheduled medium access is that it needs a common sense of timing in
order to create a long-lived network. Without precise (local) synchronization, nodes have to use long guard
intervals to ensure that receivers are ready when transmitters start transmitting, wasting valuable energy.

Timing experiments presented in [vHH06] show that the prototype wireless sensor nodes can maintain
relative synchronization with little error. To establish multi-hop synchronization in the network, LMAC
uses a hierarchical synchronization scheme (i.e. all timing is relative to the timing of a gateway node).

5.1.2 uIP TCP/IP

uIP is an implementation of the TCP/IP protocol stack intended for small 8-bit and 16-bit microcontrollers.
uIP has a very small code memory footprint, on the order of a few kilobytes. RAM usage is on the order
of a few hundred bytes. uIP is used by at least 100 companies worldwide for a multitude of different
applications ranging from oil pipeline measuring equipment to satellite communication systems. uIP is
also used in many research projects at academic institutions.

Despite its small code size uIP includes the base-line IP protocols: TCP, UDP, IP and ICMP. The
implementations are RFC compliant and is therefor able to communicate with any other RFC compliant
TCP/IP protocol implementation. The TCP implementation also includes support for several passively
listening TCP (server) sockets and multiple simultaneous TCP connections. The maximum number of these

c©Embedded WiSeNts consortium: all rights reserved page 72

Embedded WiSeNts Research Integration: Platform Survey

is configurable at compile time. The TCP implementation supports flow control, fragment reassembly and
retransmission time-out estimation. The small memory consumption is achieved by trading throughput for
memory: for sending only one outstanding TCP segment per connection is supported.

The uIP code base also includes several example applications, including a web server, a web client, and
an SMTP client. uIP is also part of the Contiki operating system (see Section 4.3). The uIP code is well
documented and freely available under a three-clause BSD-style license. uIP is also the only TCP/IP stack
that has been ported to TinyOS. The uIP port to TinyOS was done by HP Labs.

Traditional TCP/IP implementations have required far too much resources both in terms of code size
and memory usage to be useful in small 8 or 16-bit systems. Code size of a few hundred kilobytes and
RAM requirements of several hundreds of kilobytes have made it impossible to fit the full TCP/IP stack
into systems with a few tens of kilobytes of RAM and room for less than 100 kilobytes of code.

Many other TCP/IP implementations for small systems assume that the embedded device always will
communicate with a full-scale TCP/IP implementation running on a workstation-class machine. Under
this assumption, it is possible to remove certain TCP/IP mechanisms that are very rarely used in such
situations. Many of those mechanisms are essential, however, if the embedded device is to communicate
with another equally limited device, e.g., when running distributed peer-to-peer services and protocols.
uIP is designed to be RFC compliant in order to let the embedded devices to act as first-class network
citizens. The uIP TCP/IP implementation that is not tailored for any specific application.

The uIP stack does not use explicit dynamic memory allocation. Instead, it uses a single global buffer
for holding packets and has a fixed table for holding connection state. The global packet buffer is large
enough to contain one packet of maximum size. When a packet arrives from the network, the device driver
places it in the global buffer and calls the TCP/IP stack. If the packet contains data, the TCP/IP stack
will notify the corresponding application. Because the data in the buffer will be overwritten by the next
incoming packet, the application will either have to act immediately on the data or copy the data into a
secondary buffer for later processing. The packet buffer will not be overwritten by new packets before the
application has processed the data. Packets that arrive when the application is processing the data must
be queued, either by the network device or by the device driver. Most single-chip Ethernet controllers have
on-chip buffers that are large enough to contain at least 4 maximum sized Ethernet frames. Devices that
are handled by the processor, such as RS-232 ports, can copy incoming bytes to a separate buffer during
application processing. If the buffers are full, the incoming packet is dropped. This will cause performance
degradation, but only when multiple connections are running in parallel. This is because uIP advertises
a very small receiver window, which means that only a single TCP segment will be in the network per
connection.

In uIP, the same global packet buffer that is used for incoming packets is also used for the TCP/IP
headers of outgoing data. If the application sends dynamic data, it may use the parts of the global packet
buffer that are not used for headers as a temporary storage buffer. To send the data, the application passes
a pointer to the data as well as the length of the data to the stack. The TCP/IP headers are written into
the global buffer and once the headers have been produced, the device driver sends the headers and the
application data out on the network. The data is not queued for retransmissions. Instead, the application
will have to reproduce the data if a retransmission is necessary.

The total amount of memory usage for uIP depends heavily on the applications of the particular device
in which the implementations are to be run. The memory configuration determines both the amount of
traffic the system should be able to handle and the maximum amount of simultaneous connections. A

c©Embedded WiSeNts consortium: all rights reserved page 73

Embedded WiSeNts Research Integration: Platform Survey

device that will be sending large e-mails while at the same time running a web server with highly dynamic
web pages and multiple simultaneous clients, will require more RAM than a simple Telnet server. It is
possible to run the uIP implementation with as little as 120 bytes of RAM, but such a configuration
will provide extremely low throughput and will only allow a small number of simultaneous connections.
Nevertheless, there exists at least one example of a device using this configuration (a pico-satellite system
where uIP is used for transmitting data from space to earth and back).

The uIP Application Program Interface (API) is different from most TCP/IP stack APIs. The most
commonly used API for TCP/IP is the BSD socket API which is used in most Unix systems and has
heavily influenced the Microsoft Windows WinSock API. Because the socket API uses stop-and-wait
semantics, it requires support from an underlying multitasking operating system. Since the overhead of
task management, context switching and allocation of stack space for the tasks might be too high in
the intended uIP target architectures, the BSD socket interface is not suitable for memory-constrained
systems.

Instead, uIP uses an event driven interface where the application is invoked in response to certain events.
An application running on top of uIP is implemented as a C function that is called by uIP in response to
certain events. uIP calls the application when data is received, when data has been successfully delivered
to the other end of the connection, when a new connection has been set up, or when data has to be
retransmitted. The application is also periodically polled for new data. The application program provides
only one callback function; it is up to the application to deal with mapping different network services to
different ports and connections. Because the application is able to act on incoming data and connection
requests as soon as the TCP/IP stack receives the packet, low response times can be achieved even in
low-end systems.

uIP is different from other TCP/IP stacks in that it requires help from the application when doing
retransmissions. Other TCP/IP stacks buffer the transmitted data in memory until the data is known to
be successfully delivered to the remote end of the connection. If the data needs to be retransmitted, the
stack takes care of the retransmission without notifying the application. With this approach, the data has
to be buffered in memory while waiting for an acknowledgment even if the application might be able to
quickly regenerate the data if a retransmission has to be made.

In order to reduce memory usage, uIP utilizes the fact that the application may be able to regenerate
sent data and lets the application take part in retransmissions. uIP does not keep track of packet contents
after they have been sent by the device driver, and uIP requires that the application takes an active
part in performing the retransmission. When uIP decides that a segment should be retransmitted, it
calls the application with a flag set indicating that a retransmission is required. The application checks
the retransmission flag and produces the same data that was previously sent. From the application’s
standpoint, performing a retransmission is not different from how the data originally was sent. Therefore
the application can be written in such a way that the same code is used both for sending data and
retransmitting data. Also, it is important to note that even though the actual retransmission operation is
carried out by the application, it is the responsibility of the stack to know when the retransmission should
be made. Thus the complexity of the application does not necessarily increase because it takes an active
part in doing retransmissions.

Finally, an alternative socket-like API, called protosockets, is under development for uIP. The API is
based on protothreads and allows applications to be written in a sequential style. Experience has shown
that this simplifies implementation of application layer protocols on top of uIP.

c©Embedded WiSeNts consortium: all rights reserved page 74

Embedded WiSeNts Research Integration: Platform Survey

5.2 Sensor Querying Tools

The most commonly defined middleware for wireless sensor networks is query management software. These
mechanisms allow an application (or user) to define a query or sequence of queries over the sensor data
being sampled by the network. This section describes experience with a publish/subscribe system, as well
as providing an overview of some other commonly used mechanisms.

5.2.1 Publish/Subscribe Abstraction

The publish/subscribe interaction scheme is a realization of the data-centric networking paradigm: it
decouples the identities of the producers and consumers of data. A subscriber (consumer) specifies its
interest in certain data in form of a subscription, for example expressed as a combination of the constraints
temperature < 30 AND humidity > 20. Such a subscription is not explicitly addressed to a certain
publisher (producer) but implicitly addresses all publishers that are capable of publishing data that matches
the constraints in the subscription. To limit the scope of a subscription the subscriber may add position,
location or radius attributes but it will not include the identity (network address) of the destination.
It is the task of a publish/subscribe middleware to deliver all matching notifications from publishers to
the respective subscribers; for example, a notification temperature = 25 AND humidity = 22 would
match the above subscription and should be signalled to the registered subscriber(s). There exist several
implementation options for the publish/subscribe scheme: centralized vs. decentralized, topic-based vs.
type-based vs. content-based publish/subscribe and different variants of the naming scheme used to
express subscriptions and notifications [EFGK03].

Sensor nodes are usually deployed redundantly (e.g. in order to account for unreliable wireless links
or limited energy supply) and a wireless sensor network application is often not interested in the identity
of a particular node, but in the physical properties that can be observed in the environment. Therefore
abstracting from node identities by means of identity decoupling as in publish/subscribe is a valuable ser-
vice of a wireless sensor network middleware. The asynchronous nature of the publish/subscribe scheme
- subscriptions and notifications are issued in a non-blocking way - is an additional advantage over tradi-
tional middleware concepts like remote procedure calls (RPC) or shared memory systems as it allows easy
integration in the event-based sensor node architecture.

The TKN group at TU Berlin has developed a content-based publish/subscribe middleware for wireless
sensor networks as a component-based framework for TinyOS.24

The top-level architecture of the framework is depicted on Figure 12.
A subscription is expressed as a logical conjunction of constraints over attributes; typically sensors will

be represented by attributes and constraints are basic comparison operators (e.g. =, <, >, ≤, ≥) which
compare two attribute values.

The publish/subscribe system is implemented in a decentralized fashion, subscriptions are disseminated
to all network nodes and the matching of notifications and subscriptions is performed on the individual
publisher nodes in order to save network resources. Exploiting the component-based nature of TinyOS,
the middleware can be combined with several routing protocols for the dissemination of subscription and
collection of notifications as long as they provide the standard TinyOS interfaces Send and Receive,
respectively (otherwise a layer of wrapper components needs to be implemented).

24The middleware was developed as part of the final demonstrator of the European research project EYES (IST-2001-
34734)

c©Embedded WiSeNts consortium: all rights reserved page 75

Embedded WiSeNts Research Integration: Platform Survey

PSBroker

SubscriberAgent
Arbiter

Message
Access

TinyAlloc
Multiple

SubscriberAgent PublisherAgent

Attribute
Container

AttributeX

Communication

Application

Sensing

Figure 12: Top-level component architecture of the TKN publish/subscribe framework

Metadata, such as sampling rate or duration of a subscription, are expressed as attributes and the naming
scheme allows to easily extend the middleware by new (metadata) attributes and respective operations.
The number of constraints and attribute-value pairs in a subscription and notification is limited only by
the size of the SDU of the respective routing protocol. Attributes and operations are specified in XML,
which facilitates extensions and the decoupling of the implementation, for example using a graphical user
interface on a PDA connected to the sensor network via a gateway node. All middleware code is open
source and available via CVS from Sourceforge.25

5.2.2 TinyDB

TinyDB runs on top of TinyOS. It sees the nodes as storage points of a distributed table called SENSORS.
As such, sorting and similar operations are not allowed on this dynamic table. It introduces a materialization
concept very similar to view concept in SQL, i.e. a window is created for a given query such that bounded
operations are possible on this window.

TinyDB has a built-in lifetime prediction and optimization algorithm. This is used for lifetime optimiza-
tion for lifetime based queries. So the user can force a lifetime on the network and TinyDB decides on the
sampling rate and other (not forced) parameter to satisfy this request.

TinyDB also has support for actuator queries, where, on a given event, the node executing query
performs an action rather than sending query results. This property is useful for changing state when a
given event occurs.

25http://tinyos.cvs.sourceforge.net/viewcvs.py/tinyos/tinyos-1.x/contrib/eyes

c©Embedded WiSeNts consortium: all rights reserved page 76

Embedded WiSeNts Research Integration: Platform Survey

5.2.3 Acquire

Acquire introduces a different query mechanism than other three middleware examined here. A query is an
active entity, which can be a complex query containing several sub-queries. So there is no clear distinction
between query dissemination and response gathering stages. As the query disseminates through the
network, it is partially resolved and responded by nodes so that it becomes smaller and smaller. As the
last node contributes and closes the query, completed response follows the reverse path or the shortest
path to the sink. In order to realize this mechanism, nodes continuously (periodically) share sensing data
with each other.

They claim that this approach is efficient. However, it also makes Acquire more suitable for one-shot
queries and makes it unsuitable for event based queries.

Acquire seems to be an academic test-bed for this new approach.

5.2.4 Cougar

Cougar is a coqmplete query layer for sensor networks. Its main focus is on query optimization algorithms,
thus Cougar is more suitable for long running queries. As with the TinyDB, query syntax is very similar
to SQL. During the query dissemination phase, a network tree is constructed. The main objective of the
project is to reduce communication needs, so in network processing is highly exploited in Cougar. Each node
sends its response to its parent node where multiple result packets are combined (compiled-aggregated)
into one simple response then sent to one level above (in the hierarchy) up to the sink.

Cougar has a limited usage for event-based queries.

5.2.5 SQS

SQS runs on TinyOS. It is a complete wsn-querying system and constructs a hierarchy tree for query
dissemination and response gathering in order to optimize energy consumption. This framework supports
multiple queries within one packet. As such, results of such queries are compiled in one single packet (up
to four distinct, complex queries supported within one packet). Current implementation supports only one
query compilation within the system.

c©Embedded WiSeNts consortium: all rights reserved page 77

Embedded WiSeNts Research Integration: Platform Survey

Data aggregation: Can a packet contain results from multiple nodes.
Complex queries : support for AND, OR, WHERE operations.
Continuous queries : Support for resident queries.
One- Shot queries : Support for one time queries.
Event based queries : Support for respond- on- condition queries.
Lifetime based queries : Support for queries forcing a life-time on nodes by
optimizing system performance.
Monitoring queries : =Continuous queries.
Network queries : Support for querying network structure and health (parent id...).
Node status queries : Support for node status and health queries (battery
condition...).

TinyDB Acquire Cougar Sqs
Data
Aggregation

yes yes yes yes

Complex
Queries

yes yes yes yes

Continuous
Queries

yes no yes yes

One- Shot
Queries

yes yes yes yes

Event Based
Queries

yes no no yes

Lifetime-
Based Queries

yes no no no

Monitoring
Queries

yes yes yes yes

Network
Queries

yes no yes yes

Node Status
Queries

no no yes yes

Nested
Queries

no no yes no

Multiple
Queries

yes yes yes yes

Multiple
Queries in
One Packet

no no no yes

Aggregation
of Multiple
Query Results

no no yes yes

Actuation
Queries

yes no no no

Offline
Delivery

yes no no yes

Query
Optimization

yes yes yes no

Routing Trees yes 1 yes yes

c©Embedded WiSeNts consortium: all rights reserved page 78

Embedded WiSeNts Research Integration: Platform Survey

Nested queries : Query within query support (SELECT ... WHERE ID=(SELECT...)).
Multiple queries : Support for concurrent multiple queries.
Multiple queries in one packet : Can one query packet contain more than one
query?
Aggregation of multiple query results : Results of multiple queries in one packet?
Offline Delivery : Take one sample every second and send results after 10 readings
kind of query support.
Query optimization : Any effort made to optimize the query processing.
Routing Trees : Whether a hierarchical tree is constructed or not (Acquire
introduces a different approach, it processes the query as it is distributed and after
the last node contributes the result is sent back by reversing the data path).

Figure 13: Comparison of sensor querying tools

c©Embedded WiSeNts consortium: all rights reserved page 79

Embedded WiSeNts Research Integration: Platform Survey

5.3 Reprogramming

From experience with wireless sensor networks, it has become apparent that reprogramming of the sensor
nodes is a useful feature. The resource constraints in terms of energy, memory, and processing power make
sensor network reprogramming a challenging task. Many different mechanisms for reprogramming sensor
nodes have been developed ranging from full image replacement to virtual machines.

Manual reprogramming of individual nodes over an interface such as JTAG is impractical in particular
if the number of nodes is high. In some cases manual reprogramming is even impossible, for example,
when nodes are deployed at remote or inaccessible places. During the development cycle, individually
reprogramming nodes leads to inefficient use of time in testing and debugging. In an testbed or deployment
environment, especially one consisting of a larger number of nodes, it may be impossible to retrieve all of
the nodes, much less individually reprogram them.

5.3.1 Reprogramming Scenarios

There are several reasons why users want to reprogram their sensor networks:

• Software development: most of often a single algorithm or module is updated frequently.

• In sensor network testbeds: WSN applications are installed and tested.

• Correction of software bugs: needed at several levels in deployed application, e.g. both OS and
application

• Application reconfiguration, but reconfiguration (sometimes also called retasking [MKL+04]) does
not necessarily include code updates [MKL+04].

• Dynamic applications: the whole application is replaced during the lifetime of a network

5.3.2 Code Execution Models and Reprogramming

The choice of the execution model directly impacts the data format and size of the data that needs to be
transported to a node. Current execution models include:

• Script languages

• Virtual machines

• Native code that allows several ways of reprogramming:

– Full image swap: often used approach, e.g. in TinyOS

– Diff-based approaches:

– Loadable modules: prelinked, dynamically linked, position independent code

There is an inherent trade-off between virtual machine code and native code: virtual machine code
(Mate, Java VM) can be much more compact, thus less bytes need to be transferred. However, code
execution is more energy-expensive. Thus, the VM approach is useful when it is known that the network
needs to be reprogrammed frequently.

c©Embedded WiSeNts consortium: all rights reserved page 80

Embedded WiSeNts Research Integration: Platform Survey

Native code is the most straightforward approach to execute code on sensor networks and a full image
swap the common way of reprogramming. This approach is the standard way of reprogramming in TinyOS
but requires the replacement of the whole image also for small bug fixes. There exist several variant of
diff-based approaches that are able to reduce the size of the code to be transferred for e.g. bug fixes.

Being able to replace modules dynamically during runtime is a more energy-efficient approach taken by
e.g. Contiki, Impala and SOS. Impala’s updates are coarse-grained since cross-references between different
modules are not possible. SOS uses position independent code, i.e. code that only uses relative references.
However, position independent code requires compiler support and requires architectures that feature
relative addressing modes, currently not available for e.g. gcc and MSP430. The Contiki OS features a
linker that is able to perform dynamic linking, relocation and loading of object code files. Contiki also
supports the ELF format, the default object file format produced by the GNU compiler collection.

While most of the approaches mentioned above can be reprogrammed over the air, the Mantis OS does
not yet support dynamic reprogramming over the radio.

While remote reprogramming is supported in some testbeds such as the the MoteLab at Harvard, there
is not much experience with reprogramming in real sensor network deployments.

c©Embedded WiSeNts consortium: all rights reserved page 81

Embedded WiSeNts Research Integration: Platform Survey

6 Simulation/Emulation environments

The practical complexities of building sensor networks make simulation and emulation techniques are im-
portant research tools. Because such environments have only limited fidelity, it is important to understand
the limitations of such tools, this topic is discussed in the final subsection.

Several simulation/emulation environments are presented, including:

• Tossim

• Glomosim

• Matlab

• Avrora

• Omnet++ (and related packages)

• ns-2

This section continues the model of the earlier section. The main features of each environment are
presented, followed by a discussion of advantages and disadvantages. A comparison table is also presented.

c©Embedded WiSeNts consortium: all rights reserved page 82

Embedded WiSeNts Research Integration: Platform Survey

Property Glomosim Tossim Omnet Avrora NS2 Matlab
1 Simulator/Emulator Sim Sim Sim Emu Sim Sim
2 CPU level simulation No No No Yes No No
3 Scalability 10000s 100s 100s - 100s 100s
4 MAC simulation support Yes Yes No - Yes Yes
5 Different MAC Protocols Yes Yes No - Yes No
6 Transport Protocol Yes No Yes - Yes No
7 Different Routing Protocols Yes No No - Yes No
8 Multi-tier Yes No Yes No Yes ?
9 Mobility Yes No Yes No Yes No

10 WSN specific No Yes No Yes No No
11 Event Generation Yes Yes Yes Yes Yes No
12 Battery Model No No No Yes Yes No
13 Lossy Transmission Yes Yes Yes - Yes No
14 Channel Model Yes No No Yes Yes Yes
15 Localization Simulation ? ? ? - ??? Yes
16 SMP support Yes ? ? Yes No No
17 Realtime No No No Yes Yes No
18 Sensor model No Yes No Yes No No
19 Debug tool ? ? Yes Yes No Yes
20 Language C NesC C++ Java C++/Tcl M-code,

C, Java
21 GUI Support Yes Yes Yes Yes Yes Yes
22 Commercially Availability No No No No No Yes
23 Ease of use Medium Hard Easy Medium Hard Hard
24 Community Size Large Large Large Large Large Large
25 Ease of getting help Easy Easy Medium Hard Medium Medium

Table 9: Data Sheet of Simulation Platforms

6.1 Tossim

Tossim is the most basic simulator for wireless sensor networks, since it directly runs the actual tinyOS
code. By exploiting the sensor network domain and TinyOS’s design, TOSSIM can capture network
behavior at a high fidelity while scaling to thousands of nodes [LLWC03]. TOSSIM takes advantage
of TinyOS’s structure and whole system compilation to generate discrete-event simulations directly from
TinyOS component graphs. It runs the same code that runs on sensor network hardware.

6.1.1 Advantages

• Runs the actual tinyOS code.

• Has models for many tinyOS and hardware specifications like radio and ADC models.

c©Embedded WiSeNts consortium: all rights reserved page 83

Embedded WiSeNts Research Integration: Platform Survey

• Same simulation code will run on the actual motes.

• Provides lossy network link model.

6.1.2 Disadvantages

• Difficult to write codes if only simulation is aimed.

• Not all desired models have simulation support yet (e.g. battery model)

• MAC layer is not well simulated yet.

Some experiences on Tossim gained by the implementations done at YTU exist. Basically, Tossim has
been used in order to port the simulation code onto the Mica2s easily. Tossim is using the actual NesC
code and creating a C code from it and we could easily produce a topology file and set the boot up times
of motes easily. However, some of the experiences were restrictive. Here, the most significant experiences
from YTU are stated.

During the simulation implementation of a network querying tool, it is observed that the following
drawbacks: In Tossim, a network signal is either a one or zero. All signals are of equal strength, and
collision is modeled as a logical or; there is no cancellation. This means that distance does not affect
signal strength; if mote B is very close to mote A, it cannot cut through the signal from far-away mote C.
This makes interference in Tossim generally worse than expected real world behavior.

Almost in all of these implementations, energy consumption was critical. Both in the querying tool
study and some code propagation studies done at YTU, lack of energy model in Tossim has been an issue.
After a simulation is run, a user can apply an energy or power model to these transitions, calculating
overall energy consumption. Because Tossim does not model CPU execution time, it cannot easily provide
accurate information for calculating CPU energy consumption.

Tossim uses ADC and RFM models to simulate different communication scenarios and different ADC
readings that can be achieved. Lossy model models node connectivity with graph edges and loss rates for
that link. A customized version of lossy model has been used in the tests. As a result, simulator’s bit level
communication stack has been replaced with packet level communication stack by replacing the bindings
of packet transmission component wiring a file to a newly developed packet transmission module.

Another important issue with Tossim is, MAC layer simulation. It simulates the MAC behavior of Mica
motes only. When using it, lots of collisions occur when queries are tested in Tossim (although in such
cases which, the maximum hop count was only three). For example, in a tree constructing application, a
child nodes packet was lost, since its parent tried both sending its own packet and forwarding child nodes
packet. This problem was temporarily solved by by-passing the MAC layer.

Also, some inconsistency between TinyOS and Tossim about data simulation have been noticed. Al-
though in real motes data losses are in packet-level, Tossim support only bitlevel simulation of losses.

Lastly, it should be added that Tossim runs quite slow in large scales. Especially, when simulating the
propagation of the entire OS code, it happened to be a big problem. But, when comparing to other WSN
simulators, it is still a bit faster.

c©Embedded WiSeNts consortium: all rights reserved page 84

Embedded WiSeNts Research Integration: Platform Survey

6.2 Glomosim

Glomosim is a scalable wireless network simulation library, built over the PARSEC simulation environment.
Each wireless communication protocol in a protocol stack is defined as a library module, which is developed
by using PARSEC, a C-based parallel simulation language. This modularity allows Glomosim users to easily
implement new protocols and add them to its library set. In order to gain the maximum performance from
the simulator it was implemented on shared memory and distributed memory computers. Glomosim is best
to used for Adhoc and mobile network simulations.

6.2.1 Advantages

• Scales in order of ten thousands

• High optimization of simulation

• Modularity of protocol implementation

• Easy to use and develop network models

• Parallel and distributed implemetation

6.2.2 Disadvantages

• Glomosim Api prevent users to use global variables.

• Maximum number of Network partition is fixed to 12.

• Scalability decreased to order of hundreds when mobility is simulated

In the work done for a service discovery project, at Yeditepe University, a simple cross-layer protocol
is designed for use of ad hoc network applications. This protocol has necessary algorithms to announce,
discover and bind to network services. While providing service access for hosts, the protocol also offers
solutions to host addressing, multihop packet routing, session and buffer management, and service naming.

Using the proposed protocol, applications may use non-interactive services available on the ad hoc net-
work. The protocol algorithms are designed as simple as possible to help building an easy to implement
network stack and only assume a basic link connectivity from underlying data link layer protocol. Appli-
cations using this protocol do not need any other protocols to have transport service or service discovery
service.

For the algorithms of the protocol to work in a service-aware manner, a service definition model is de-
signed using extensible markup language (XML). This attribute-value pair holding design is used throughout
the algorithms of the protocol to refer specific instances of services offered by the hosts of the ad hoc
network. Hosts of the ad hoc network are also represented as attribute-value pair holding XML instances.

Having host and service instances used in algorithms, an easy to enhance protocol is designed. Features
like battery awareness or QoS provisioning may be implemented to be embedded into the proposed protocol.

In this work, dynamic access to named non-interactive services in ad hoc networks is studied and a
simple cross layer protocol is designed for service discovery and routing. The algorithms of the proposed
protocol are implemented in a wireless network simulation software, GloMoSim, for the purpose of algorithm

c©Embedded WiSeNts consortium: all rights reserved page 85

Embedded WiSeNts Research Integration: Platform Survey

verification and performance evaluation. Some representative applications and scenarios designed out of
these applications using the simulation software extensions for the new protocol are also implemented.
The results from these experiments have shown that a service aware slim protocol stack implementation
is possible for non-interactive service access in mobile ad hoc networks.

6.3 Matlab

The sensor network research community has very recently started using MATLAB as a simulation environ-
ment for wireless sensor networks.

MATLAB, short for MATrix LABoratory, is a matrix-based numerical computing environment and a
programming language. It was invented in the late 1970’s but commercialized only in 1984 (after having
being rewritten in C) and is nowadays widely adopted as a tool for data analysis and plotting. Since it
is an interpreted language, MATLAB is slower than C or Java when executing programs. MATLAB is
also a scripting language, and favors therefore rapid development (at costs of efficiency of execution) and
can easily communicate with program components written in other languages (like e.g., Java). Being
an interpreted scripting language, is maybe the characteristic that more than others makes MATLAB a
promising way to simulate and test algorithms for sensor networks: the user can directly interact with
the sensor networks by calling commands on the MATLAB command line. This interaction through the
command-line environment is not possible when executing a Java sensor network application: in this case,
once the application has been started it can only be controlled through a GUI.

MATLAB can be easily used in conjunction with TinyOS which is the de facto standard operating system
for current wireless sensor networks research. Messages from and to the network can be exchanged between
the TinyOS Java Tools and the MATLAB environment, allowing for an on-line sensor data analysis and
plotting. For instance, MATLAB can be connected to a a physical sensor node (connected through a serial
port), to a serialForwarder (The serialForwarder is a TinyOS Java Tool that allows to read packet data
from a serial port and forward it over a TCP/IP connection), or to an instance of TOSSIM, the TinyOS
“native” simulator.

Scripts and documentation for properly setting the MATLAB environment to work with TinyOS, as
well as tutorials and example applications, are available for download at the TinyOS project website
(www.tinyos.net).

6.3.1 Advantages

• Modularity of the simulation process

• Compatibility with TinyOS

• Direct interaction with sensor networks

• Importing functions written in C and Java

• Easy to use and develop physical layer models

c©Embedded WiSeNts consortium: all rights reserved page 86

Embedded WiSeNts Research Integration: Platform Survey

6.3.2 Disdvantages

• For higher layers of OSI structure, lack of simulations for WSN algorithms

• Slower than C and Java codes

• Scalability

The use of MATLAB for wireless sensor networks simulation and testing is also particularly interesting
for researchers working on topics related with the lower layers of the protocol stack, such as physical and
data link layers. In this case, MATLAB can be used to model the stochastic behavior of the wireless radio
channel and the signaling among the nodes.

One of the most challenging areas of the wireless sensor network design is the positioning of the nodes.
Once they are disseminated randomly, they must locate themselves in order to make their readings valu-
able. Recent localization studies for wireless sensor networks mostly try to estimate the distance between
the communicating nodes. In order to get the distance information, the Received Signal Strength Indicator
(RSSI) or Time-of-Arrival (TOA) methods are preferred. In both methods, the accuracy of the estimation
is affected by the environmental conditions, such as multipath fading, noise, etc. On the other hand,
MATLAB toolboxes provide users with modeling those phenomena. Generally speaking, the more precise
stochastic process chosen for modeling the radio communication, the more accurate localization informa-
tion. MATLAB can be used especially for the simulation of the localization algorithms designed for wireless
sensor networks due to its accurate random process modeling ability. To sum up, MATLAB can be used for
the simulation of the algorithms implemented in physical and data link layers. It gives an idea about the
possible results of the real life implementation of proposed algorithms. Therefore, especially localization
algorithms that rely on ranging and distance information and radio communication of the wireless sensor
networks can be simulated in MATLAB.

In the Computer Architecture, Design and Test for Embedded Systems group (CADTES), the University
of Twente, MATLAB is used for the design of a simulator for the localization studies in wireless sensor
networks. Named as the LocSim, the simulator has been developed to build a common ground for various
algorithms. The main interest of the simulator is the performance of localization protocols rather than the
performances of the underlying networking layers.

The simulator is a library that can run with the Simulink of MATLAB where functions are represented as
blocks and users can simulate various events by wiring those blocks. All MATLAB functions and Simulink
blocks are available for various analysis such as portability across multiple platforms is assured; the tool
itself is a standart, etc.

The main focus of the simulator is the precision achieved by the localization algorithms. Furthermore,
delays, traffic amount or influence of errors can be measured as well. Also the influence of communication
protocol stuck is provided.

Users of the simulator can easily collect data of the same simulation for a variety of parameters. Besides,
functions programmed using C can be implemented. Each algorithm is represented as a one block. It is
trivial to change, add or remove steps of algorithms, analyze how each stage influences the final results,
etc.

c©Embedded WiSeNts consortium: all rights reserved page 87

Embedded WiSeNts Research Integration: Platform Survey

6.4 Avrora

Avrora can be used for CPU level sensor-network monitoring. In that sense it is comparable to ATEMU.
Although it comes with an insufficient energy model, implementing an accurate one is quite straightforward.
If you are to monitor the behavior of a program in the CPU, like memory accesses, register usage, instruction
level behavior, this tool is the right tool to chose.

6.4.1 Advantages

• Avrora is a cycle accurate simulation tool for sensor nodes. It simulates microcontrollers ATMega128,
ATMega32, ATMega16 and supports mica2 and telos platforms.

• Since Avrora is basically a CPU emulator, it directly runs CPU images, enabling the developer to
work on programs written in any language of choice; this is the main advantage of this tool.

• Avrora is written in java. It has a built-in plug-in support at CPU level. This means that programmer
can interfere with the execution of the program, can put counters, energy monitors, samplers inside
the CPU. Researchers do not need to hack Avrora code, all they need to do is to extend the monitor
class and implement necessary interfaces. Direct monitor support includes probes for register and
memory accesses and events fired before and after executions of instructions, which also apply to
sensor device accesses and send, receive interfaces. Almost anything related to CPU monitoring
made easy with this support. When monitors written in java put into the monitors directory, it
becomes a part of the environment automatically.

6.4.2 Disadvantages

• This tool can also be used for sensor-network simulation and it supports topology definition. As
usual, it can be used with serial-forwarder and other sensor-network analysis and simulation tools.
However, since it is a CPU simulator, using it for a simple network simulation may slow down the
research process.

• Avrora comes with a poor energy model; the tool itself does not provide a detailed and accurate CPU
level energy consumption. However, as mentioned above, constructing an accurate energy model for
the purpose at hand is quite simple and such development process won’t take a significant time.

• Avrora is almost 50% slower than TOSSIM.

Avrora proved to be a great and easy to use simulation environment for the specific purpose of a
research in [YTU]. It was used to obtain data on hit/miss rates of some benchmarks for different cache
architectures. It was also used to gather most frequently written bytes to SRAM and registers [1] and also
total number of SRAM and register reads/writes.

Since Avrora is a CPU-level simulator and it is a java application, although runs much faster than
expected, it does not provide a great simulation speed; this is true especially if you want to record some
figures for each instruction executed. So Avrora was used to extract read/write listing for each benchmark
into a file and computed figures for cache architectures using a small C program.

c©Embedded WiSeNts consortium: all rights reserved page 88

Embedded WiSeNts Research Integration: Platform Survey

Apart from this, it has a great plug-in support (they are called monitors) so that researchers didn’t need
to hack Avrora code. Coding two monitors (one for register, one for SRAM access information) was all
that was done. This took about 100 lines of code. However, there is one exception to this: at one point
the simulator code was modified because no other proper way to insert watches on registers (for job [1])
were able to be found.

Good things about this environment can be listed as easy to implement monitors, its speed, ease of
use, good support for developers (mailing list and update frequency), its sensor network simulation mode
(quite a feature for a CPU level simulator) and easy to understand java code.

When it comes to side-effects of Avrora environment: one might say that it is not well documented for
the moment, such that when you want to start coding you have to spend some time wandering around
java files and it still lacks some features (the simulator code was modified a bit). However, perhaps one
of the weakest features of Avrora is its energy model. For some purposes, an accurate energy model
was needed that takes into account energy consumption of SRAM reads/writes that makes a distinction
between instructions writing to registers and reading from them (and that also differentiates number of
registers being used). For the said research, calculations on generated data required for very accurate
energy assumptions.

All in all, Avrora helps to save a lot of time for benchmarking processes.

6.5 OMNeT++ simulator

OMNeT++ is a general purpose discrete event simulator written in C++ that is slightly biased to simulate
communication networks. It provides extensive visualization of the network protocol and parallel simulation
on many hosts.

Its main advantage is the separation of concerns. The protocol code is implemented in C++ modules.
The composition of these modules into complete protocol stacks is done using a simple composition
language, which is also used to describe the composition of the network.

In simulations, the researcher wants to simulate a protocol in several variants and under several condi-
tions. OMNet++ supports this using a configuration file, where all these variables are kept. These latter
two aspects – specification of the network and the definition of variables – are mixed in e.g. ns-2, making
it difficult to find the right variable to change. The initialization file format of OMNeT++ supports by
default a batch execution: variables can be grouped into runs that are executed sequentially.

Using the extensive documentation and tutorials, the researcher is able to write his own models fast and
in a modular fashion. OMNeT++ is also able to run the simulation fast, by providing two ways of parallel
execution. If the simulation is small enough to run on a single computer, several replications can be run
on different computers using different seeds – this way, statistically significant results are obtained faster,
compared to a sequential execution of the simulation using different seeds. This feature requires the tool
Akaroa. If the simulation is too large to fit on a single computer, it can be split in several segments that
are distributed on different computers using the MPI library. When the simulation is over, OMNeT++
provides tools to analyze and plot the results.

OMNeT++ is supported for Windows and Linux. The parallel execution features usually require Linux.
The assessment of simulation speed is difficult. Many simulations are Input/Output limited, because

they have to write the results into files that are post processed to arrive at simulation results. To avoid
I/O operations, one can keep summary statistics in memory and write them to a file once the simulation

c©Embedded WiSeNts consortium: all rights reserved page 89

Embedded WiSeNts Research Integration: Platform Survey

finishes. This approach requires extensive statistical knowledge to remove the transients and ensure
statistical independence of the observed variables. This knowledge is implemented in Akaroa.

The next big bottleneck after the I/O operations are the schedulers. The scheduler of OMNeT++ is
heap-based with O(log N) performance, whereas ns-2 uses a calendar scheduler with O(1) performance.
However, ns-2 performs comparable to OMNeT++, because the Tcl-binding requires extensive translations
of the simulation time from and to strings.

6.5.1 Advantages

• modular protocol development

• clean architecture for instrumenting protocol state and studying cross-layer optimization Mobility
framework

• consistent separation of variables and network configuration

• scalability, with support for parallel and distributed simulation

• good documentation

• visualization and statistics tools

6.5.2 Disadvantages

• fewer built-in models than e.g. ns-2

• requires knowledge of C++ and STL

• relatively small, but active, community

By design, the OMNeT++ environment provides relatively few built-in modules. Simulation support
for wireless and sensor networks is provided by a number of contributed modules, several of which are
described below.

6.5.3 Mobility Framework

The evaluation of the performance of a networking protocol is often done using discrete event simulation.
The simulation allows the exact reproduction of runs and conditions under which a protocol is tested.
However, the reproduction of the environment under which the protocol will be applied is necessarily limited.
The physical environment (radio wave propagation, collisions) is an important part of such a performance
evaluation, but is also fairly general and can be reused for many simulations. This observation lead to
the implementation of the mobility framework [DSH+03], a framework for the discrete event simulator
OMNet++ that takes care of the physical environment.

Besides modelling the physical behavior efficiently for large scale simulations (10000 simulated nodes
running a CSMA protocol fit into less than 200 MByte of RAM), the mobility framework introduces a
blackboard for anonymous communication between modules. It introduced the ability to separate the
performance evaluation code – which needs access to protocol internal state variables – and the protocol

c©Embedded WiSeNts consortium: all rights reserved page 90

Embedded WiSeNts Research Integration: Platform Survey

code itself. The state variables of the simulated protocol are published on the black board and received by
performance evaluation modules that take care of the appropriate post processing. This separation allows
the re-use of protocols without the need to remove the performance evaluation code first. Furthermore,
the blackboard allows cross-layer optimizations without sacrificing the modularity of a layered protocol
stack.

To sum up, the mobility framework adds

• radio wave propagation models

• random placement of nodes

• automatic update of links between nodes

• mobility, by default a mobility model is used where nodes move with constant speed.

• blackboard with publish/subscribe interface that allows anonymous exchange of information between
different layers of the protocol

• basic MAC protocols like Aloha, CSMA and IEEE 802.11b

• basic network layers like flooding

• possibility to integrate UDP and TCP

• applications with different send behavior

Despite the limited number of implemented protocols, the framework is widely used in the community,
especially the blackboard has proved to be a valuable tool. Many simulators for sensor networks implement
a comparable approach. The framework is available on http://mobility-fw.sourceforge.net. The
major drawback is that the user needs a good understanding of C++ and the STL.

6.5.4 NesCT

NesCT is a compiler written by Omer Sinan Kaya that translates TinyOS code to OMNeT++ code such
that it can be used with the Mobility Framework. It is available from http://nesct.sourceforge.net.

6.5.5 WSN simulation template

The simulation template for wireless mobile sensor networks proposed in [DH03] concentrates on similar
aspects like the Mobility Framework. Being inspired by an early version of framework, it models the physical
layer, manages connections and makes use of the blackboard. Its main focus is to ease the development of
protocol stacks by providing the developer with template code for each layer in the stack. The template
code is generated only for layers that the developer specifies and which he has to fill in afterwards.

Further implemented features include:

• Mobility (Random Way Point algorithm by default)

Each node is responsible for defining its own trajectory and announcing it to the simulator;

c©Embedded WiSeNts consortium: all rights reserved page 91

Embedded WiSeNts Research Integration: Platform Survey

• The user can specify if unidirectional or bidirectional links have to be used. Each node can specify
and update its transmission range independently;

• Some basic energy management

• Nodes failing identification

The nodes have different kinds of failing probabilities (individual failures, failures that affect regions
of the map, etc.) Maps for area failures can be specified and used. Other maps can easily used for
obstacles, fading, etc.

It makes use of C-Macros that make programming easy, but on the other hand can cause portability
issues.

6.6 Network Simulator 2 (ns2)

ns2 is a discrete event simulator targeted for network research. It was produced by the VINT project
[ns202] and it is the standard de facto in the research community to perform wired and wireless network
simulations.

• It is written in C++ and its core is composed by few classes that can be binded with OTcl library, an
object oriented Tcl-based scripting language. The coupling between C++ and OTcl makes possible
to set on the fly many parameters (i.e. transmission power of antennas, MAC attributes, nodes’
position in simulated scenario...) and to perform multiple simulations without recompiling the ns2
code: this simplify very much batch simulations.

• It supports many wireless and wired protocols: routing (AODV, DSR, OLSR, DirectedDiffusion,
DYMO...), 802.11, 802.11e, 802.15.4, Bluetooth (BlueHoc), GPSR (Greedy Perimeter Stateless
Routing), satellite communications, tcp/ip, traffic generators (persistent and pipelined http con-
nections, video streaming of mpeg4...), topology generators, scheduling and queue management
algorithms (WFQ, CSFQ, JoBS,...). It has also a set of mobility models (CANU Mobility Simulation
Environment, mobility generator tool). You can find a complete reference at [ns2].

• Simulator is mainly composed by a Scheduler of Events and from Handler (i.e. timers or network
protocol layers). Networks Packets are a particular class of Events and communications between
entities can be performed by method invocation, Packets passing and Event notification to Handlers.

• It comes with a simple Tcl/Tk tool to perform offline analysis of simulation’s traces: Network
Animator (NAM). This software shows the topology layout, animate packets delivery and helps to
inspect data packets. Unlikely it is is not very useful for wireless simulations since there isn’t a good
representation for broadcast packets (they are shown as circular propagation waves).

• Its structure is monolithic: there is no support for dynamic libraries or any kind of modularization of
code.

The use of ns2 by mean of OTcl scripts is very simple to understand from a beginner: there is a good
tutorial and many examples (directory ns-tutorial) that drive a user from the creation of a simple scenario

c©Embedded WiSeNts consortium: all rights reserved page 92

Embedded WiSeNts Research Integration: Platform Survey

with a point to point wired connection between two devices to a very complex wireless network with
hundreds of different devices and a complete network stack as well as traffic generators (i.e 802.11 as Mac
layer, DRS as routing layer, and FTP as traffic agent between two devices).

While OTcl approach and the use of well tested network solutions make easy to perform batch simu-
lations, the learning curve of an user that wants to implement in ns2 its own solutions (i.e a MAC layer,
a routing protocol, a physical propagation model...) is steep. Since documentation is very scarce and
often code is not commented, its reuse is often a difficult task. Further, ns2 directory structure and files
placement is not so obvious to understand (a standardized approach is missing): for example a developer
that wants to add a new network protocol, needs to declare it in common/packet.h, change a couple of
lines in trace/cmu-trace.cc to manage tracing of its packets and declare it in OTcl in tcl/lib/ns-packet.tcl.

The use C++ facilities as Standard Template Library are not so much encouraged because some bugs
in old version of gcc compiler (solved in newer versions).

ns2 has a good energy model: it is possible to set energy consumption of radio when idle, sleep, when
it is transmitting or receiving. In last version (2.29) is also possible to se the consumption and duration
of radio switching between idle and sleep.

One of the bigger problems in developing solutions for ns2 in wireless scenario is the lack of a good and
integrated solution for debugging. Tracing of packets is not adequate when number of nodes grows up
and network is wireless (a broadcast can produce several reception). Often a developer is constrained to
use printf and parse its own dump.

Online documentation on ns2 and mailing lists however cannot yet replace user’s experience: many
situations which have to be analized when implementing protocols in ns2 require experience to be solved.
Here we present an example taken from a real implementation of a MAC protocol layer in ns2 to give an
idea of this issue.

When a packet is sent, the class that represent the physical medium delivers it to each device in the
network that verify the connectivity constraint: the received power of message is higher than receiving
threshold. All destination devices will receive the whole packet as a single event.

In real word, the reception of a packet takes time; for this reason the destination entity needs to bufferize
the received packet and start a timer to simulate the process of reception of the packet.

This approach is not so obvious to manage since many situations can happen:

• other packets can arrive in the middle of a packet reception (generating collisions),

• another packet is received such as its received power is greater than old packet’s one (so previous
packet should be discarded and maybe more powerful packet captured),

• the device can listen only a little part of header and turn radio off if packet is not destinated to it
(and do not stay in receiving mode for the whole packet duration).

This example shows how sometime a simple event like packet reception must be modified to reach
a real behaviour (we need a timer, a member variable as buffer and some methods to manage the real
reception...). All those issues are often difficult to manage for a beginner.

The fine-grain control of events in ns2 help to improve behaviour of simulation but produces the side
effect of scalability’s reduction: simulations cannot be performed with more than a thousand of devices
(or even less if traffic rate of network is high).

c©Embedded WiSeNts consortium: all rights reserved page 93

Embedded WiSeNts Research Integration: Platform Survey

A prominent technique used to make ns2 faster and scalable is staging [KW03]. This tecnique is
summarized by the words: function caching and reuse to reduce redundancy of simulator’s computation
[sns].

Unlikely this enhanced version of ns2 is no more supported and its code is based on version 2.1b9a of
ns2 (at the moment of writing of this document current version of ns2 is 2.29).

6.7 On the accuracy of simluation environments

The deployment and the debugging of wireless sensor networks in the real world can be rather hard,
in particular if large networks are considered (typically thousands of nodes). There are several popular
simulators [Cur] in the wireless sensor network area. They all provide advanced simulation environments.
In any case, a simulation is helpful if it can produce a behavior which is as close as possible to the
real one. The correct modelisation of components such as collision detection module, radio propagation
or MAC protocols is a major issue. Developers focus is typically in the definition of all the aspects of
their algorithms and/or protocols, but the interaction with the other layers is often disregarded. The
proper setting of simulation parameters and the modelisation of the environment, i.e. mobility schemes,
power ranges, connectivity, must be carefully done. Incorrect initial conditions, for example, may lead to
unexpected results.

In [CSS02] the authors present a set of measures collected during the simulation of the flooding algorithm
in MANETS on different simulators (OPNET, NS-2, GloMoSim). This very simple broadcast algorithm,
which simply consists in forwarding to the neighboring nodes every message received for the first time,
is a basic building block for several wireless network protocols. The authors have carefully implemented
flooding in each simulator paying special attention in setting the same parameters and considering the
same scenarios. Surprisingly enough, they have collected very different results, barely comparable.

In [GKW+02] the authors confirmed the “complexity” of flooding also in the WSN environment. They
present an empirical study involving over 150 nodes operating at various transmission power settings. The
instrumentation in the experiments permits to separate the effects at the various layers of the protocol
stack, in order to better understand the behavior of each component. The study confirms again that
flooding, can exhibit surprising complexity.

We think that a further development of these studies, in order to better understand which is the reliability
of WSN simulators, is an important task. In particular WSN have the nice property that testbeds can
be easily deployed (if compared to MANETS). This allow us to compare the results of simulations and
testbeds in order to get enriched feedbacks on the quality of nowadays WSN simulators.

c©Embedded WiSeNts consortium: all rights reserved page 94

Embedded WiSeNts Research Integration: Platform Survey

7 Testbeds

In order for any platform to be useful, it is necessary to be able to develop and debug software and run
tests easily and efficiently. These requirements apply to both the “day-to-day” coding-testing-debugging
cycle and the deployment of larger and more complicated testbeds.

This section describes some of the testbeds developed and used in connection with the research platforms
described above.

The discussions section presenting used experience address the following two questions:

• debugging: How do we write and debug code on our platform on a day-to-day basis?

• deployment: How do we deploy and work with a larger network?

7.1 DEI Testbed

Table 10: Testbed at the Department of Information Engineering (DEI), University of Padova (Italy)
day-to-day testbed

name SIGNET
size 48 EyesIFXv2 nodes
area 100 m2

topology grid
location indoor (room)
topic localization - MAC - routing
other nodes are powered and programmed via USB cables and hubs

7.1.1 Description

The testbed is made of 48 eyesIFX v2.0 nodes. They are hung 60 cm from the ceiling of a 100 m2–wide
room. Nodes are arranged on a grid and powered via USB cables, which are connected to autonomously
powered USB hubs. USB hubs are, in turn, connected to a control station (desktop computer), which
is used to program the nodes and run debugging functionalities. To this end, we have developed a
management software that permits simultaneously programming of bunch of nodes, from one up to the
entire network. The software is written in Java and can be easily adapted to any other network, given
that nodes are connected to the controlling station via USB. The software is available free of charge, upon
request, and it comes with a basic instruction manual.

7.1.2 Discussion

The management software we have developed provides basic functionalities for exchanging data with the
nodes. The added value of this software is that it permits to interact with multiple nodes simultaneously
and to have a graphical representation of the entire network. Hence, programmer can easily write new
plug-ins and link them in the software.

c©Embedded WiSeNts consortium: all rights reserved page 95

Embedded WiSeNts Research Integration: Platform Survey

A collection of general–purpose plug–ins is included into the standard distribution of the software pro-
vided with the EyesIFXv2 development kit. The plug-in called Programmer, is useful when compiling an
installing TinyOS applications. In a network where all nodes are connected via USB bus to the pc, the
main problem is how to know the serial port addresses of each node. Our application and the Programmer
plug–in allow the user to install applications into the desired nodes without having to look for the right
port coordinates, which are automatically detected when the application is launched.

Some debugging functionalities are provided by ComListener and SerialDump modules. ComListener
tool listens to ¡the serial ports and keeps log all data received, thus permitting to keep trace of the code
execution. SerialDump is used to send data to the serial port over the USB bus every time a breakpoint
is reached during the execution of the program. The plugin collects this information and prints them in a
user–friendly window, possibly with different colors and formats.

Up to now, the testbed has been used for experimenting localization, MAC and routing algorithms.
Setting the nodes in Low transmission power mode and low low-noise-amplifier (LNA) gain mode, as well
as acting on the digital potentiometer, it is possible to reduce the coverage area in order to have multi–hop
connections also in the limited area where the testbed is deployed. Notice that, while the coverage range
is determined by both LNA gain and transmission power, the interference level depends on the emitted
power only. Therefore, we can experiment different network behavior by varying the setting of transmission
power and LNA gain, even if the coverage range remains unchanged.

The first experiments we run on the testbed have revealed the need for calibrating the RSSI circuitry
of the nodes. Indeed, we observed non–trivial differences between the RSSI readings of multiple nodes
operating in the same conditions. Such calibration errors have a dramatic impact on the performance of
localization algorithms that are based on RSSI–ranging.

Our testbed is a useful tool for testing localization algorithms. Reducing the coverage (sicuro?) area
with lower transmission power and changing antennas, it could be a good platform also to test routing
algorithms in a real multi-hop network.

c©Embedded WiSeNts consortium: all rights reserved page 96

Embedded WiSeNts Research Integration: Platform Survey

Figure 14: The indoor testbed at DEI.

Figure 15: The management Software interface.

c©Embedded WiSeNts consortium: all rights reserved page 97

Embedded WiSeNts Research Integration: Platform Survey

7.2 TWIST Testbed Architecture

TWIST [HKWW06] is a scalable and flexible testbed architecture for indoor experimentation with wireless
sensor networks. The design of TWIST is based on an analysis of typical and desirable use-cases. It provides
basic services like node configuration, network-wide programming, out-of-band extraction of debug data
and gathering of application data, while introducing several novel features:

• Support for experiments with heterogeneous node platforms.

• Active node power supply control, enabling easy transition between USB-powered and battery-
powered experiments, dynamic selection of topologies as well as controlled injection of node failures
into the system.

• Hosting of both flat and hierarchical WSN configuration, due to a layer of “super nodes” that on
one hand form a part of the testbed infrastructure but can also play a role as elements of the sensor
network.

The self-configuration capability, the use of hardware with standardized interfaces and open-source
software makes the TWIST architecture scalable, affordable, and easily replicable. Figure 16 depicts the
hardware architecture of TWIST.

Figure 16: Hardware architecture of the TWIST testbed

c©Embedded WiSeNts consortium: all rights reserved page 98

Embedded WiSeNts Research Integration: Platform Survey

7.2.1 TWIST Instance at the TKN Building

The local instance of TWIST spans three floors of the Telecommunication Networks Group office building
at TU Berlin. Currently, there are about 100 fixed locations for nodes with known positions and additional
100 free slots on the USB hubs. The instance uses 37 NSLU2, 53 USB hubs and about 600m of USB
cables. The NSLU2 communicate over wired Ethernet, but alternatively they can use a USB-to-WLAN
adapter (attached to the free USB port of the NSLU2) to establish a wireless backbone network.

Figure 17: Euclidean distance between a base station and nodes on the 4(th) floor

The placement of the nodes is kept as regular as possible, with at least two sockets in each room 26. This
provides at least two fixed and known node locations per room, giving insight into the spatial distribution
of the measured values like light and temperature and allowing for cross-calibration of sensors of the same
type. The node placement is shown in Figure 17. This figure also shows the exact location of the sockets,
measured after the installation. The sockets are placed 1 m and 4m from the window, and 1.5 m from each
wall. For the large rooms a different arrangement is used, with four sockets per room, in order to keep
the inter-node distances comparable. Any sparser, more random placement of the nodes can be emulated
using the power supply control feature of the testbed.

The USB cabling is neatly routed using cable channels mounted along the walls and on the ceiling. To
connect a node to a socket, it is simply connected it to the USB cable and affixed to the cable channel as
shown in Figure 18. This also means that the nodes are mounted about 4 cm from the ceiling.

26The testbed is currently being expanded to double its capacity, resulting in four sockets in each room

c©Embedded WiSeNts consortium: all rights reserved page 99

Embedded WiSeNts Research Integration: Platform Survey

Figure 18: Tmote Sky node connected to a TWIST socket

Table 11: TWIST Testbed Instance at the Telecommunication Networks Group of TU Berlin
name TWIST

size
100 multiplatform sockets: eyesIFXv2.1, TelosA, Tmote Sky, Tmote
Invent

area 1200 m2

topology (see Figure 17)
location indoor (room)
topic general application
other binary node power supply control and distributed testbed processing

c©Embedded WiSeNts consortium: all rights reserved page 100

Embedded WiSeNts Research Integration: Platform Survey

Figure 19: DNS node demonstrator [HW05]. The DSN node is situated on the left side, the target
node with a mounted sensor board on the right side.

7.3 ETHZ Testbed

A permanent setup of 19 BTnodes has been deployed during summer 2005 at the Computer Engineering
and Networks Laboratory at the ETH Zurich. This testbed is intended as a demonstration platform
for implementing and validating the Deployment-Support Network (DNS), a new methodology for the
deployment, debug and monitoring of wireless sensor networks. The main idea consists in physically
attaching DSN nodes via a programming and debugging cable to target sensor networks devices like sensor
nodes, as shown in figure 19. Currently, the DSN supports only BTnodes as target devices, but any other
Atmel AVR target, like i.e. Berkeley/Crossbow Motes could also be easily added. The DSN nodes can
autonomously interconnect through Bluetooth ad-hoc networking and thus form an autonomous, wireless
support network. This support network provides connectivity from one or more host controllers (e.g.,
a desktop or laptop pc) to the target nodes, allowing remote programming, debugging, monitoring and
control.

Figure 20 shows the placement of the 19 BTnodes that form the ETHZ testbed. The network is deployed
on the G floor of the ETZ building at ETH Zurich, throughout the rooms and corridors of the Computer
Engineering and Networks Laboratory. Currently, all nodes are powered over USB to ensure long-term
network availability. However, the network can be easily extended with battery-operated nodes.

Interested readers can retrieve more information about the current test implementation of the Deploy-
ment Support Network (called JAWS), through the BTnode project web site [BTna]. A simple graphical
user interface (written in java) is available for visualizing network topology and to access and control the
DNS nodes27.

27Available on-line at: http://www.btnode.ethz.ch/Projects/Jaws

c©Embedded WiSeNts consortium: all rights reserved page 101

Embedded WiSeNts Research Integration: Platform Survey

Figure 20: Placement of the 19 BTnodes that form the ETHZ testbed [HW05]. The network is
deployed throughout the G floor of the ETZ building at ETH zurich.

c©Embedded WiSeNts consortium: all rights reserved page 102

Embedded WiSeNts Research Integration: Platform Survey

7.4 YTU Testbed

7.4.1 Description

In YTU, a number of test-beds were constructed to support ongoing research projects. Most of the test-
beds were one-hop or two-hop, simple topologies of either mica2 or t-mote sky nodes. A one-hop test-bed
was constructed with 2 mica2 nodes for testing SQS query middleware within in a system designed for
detecting human traffic in and out of a room. In another recent localization research, a two-hop test-
bed consisting of five t-mote sky nodes was constructed. Apart from those mentioned, numerous simple
one-hop test-beds were utilized for testing research code on a real platform.

7.5 SICS Testbed

7.5.1 Description

SICS currently does not have a permanent testbed, but rather a quite large number of nodes (around 60)
of different types, namely TelosSky, ESB2 and ECR-like nodes from Scatterweb. Some of the nodes are
tailored for specific real-world applications we are developing and hence will no longer be at SICS after
deployment of the corresponding network.

Software development is done mostly under the host simulation environment (see Section 4.3.6) and
the COOJA Contiki OS Java Simulator, a simulator that enables simulation of networks of Contiki nodes
that is currently under development. The COOJA system is both flexible and extensible in that many
levels of the system can be changed or replaced: sensor node platforms, operating system software, radio
transceivers, and radio transmission models. The simulator is implemented in Java, making the simulator
easy to extend for users, but allows sensor node software to be written in C by using the Java Native
Interface. Furthermore, the sensor node software can be run as compiled native code for the platform on
which the simulator is run. We are also developing a sensor node emulator for ESB/2 hardware that can
be plugged into the simulator enabling emulation of actual ESB hardware.

Download of code on sensor networks is done using the serial interface or over the radio of the number
of nodes is large. Contiki supports modular run-time reprogramming of selected parts of the system over
the radio. Debugging on the ESBs can be performed using the three LEDs on the board, or the serial
interface. It is also possible to debug a single node using the on-board JTAG-connector, but we have only
very limited experience with this.

7.5.2 Discussion

While a testbed would be useful for certain scenarios and some of our application development, we have
not yet invested the time to build such a network but instead are building special-purpose networks for
specific experiments. We have also decided to work on the new COOJA Contiki simulator to replace the
non-deterministic network simulator we previously used.

c©Embedded WiSeNts consortium: all rights reserved page 103

Embedded WiSeNts Research Integration: Platform Survey

8 Conclusions

In this report, we have presented a critical survey of several commonly used research platforms for wireless
sensor networks. The report presents both a catalog of feature data and, more importantly, a discussion
of expert users’ experience with the platforms.

In addition to providing a useful collection of information, we have also used this work to identify research
gaps and issues related to the research platform. As a result, the report highlights the importance of the
development environment and the effectiveness of the development (program-test-debug) and deployment
tools.

An important way to improve the ease-of-use of a platform is to increase the number of users and the
variety of purposes for which a platform is being used. Moreover, the collective experience of a diverse
user community provides the necessary technical basis for standardization and system integration.

Providing information that makes researchers aware of the diversity of available platforms and helps
them select the platform that is appropriate for their needs – as in this report – contributes to these goals.

References

[Amba] Ambient System B.v. http://www.ambient-systems.net/ambient/index.htm.

[Ambb] Ambient system products. http://www.ambient-systems.net/ambient/products-system.htm.

[BDH+04] J. Beutel, M. Dyer, M. Hinz, L. Meier, and M. Ringwald. Next-generation prototyping of
sensor networks. In Proceedings of the 2nd International Conference on Embedded Networked
Sensor Systems (SenSys ’04:), pages 291–292, New York, NY, USA, 2004. ACM Press.

[BDMT05] J. Beutel, M. Dyer, L. Meier, and L. Thiele. Scalable Topology Control for Deployment-
Support Networks. In Fourth International Symposium on Information Processing in Sensor
Networks (IPSN 2005), pages 359–363, April 2005.

[Beu05] Jan Beutel. Real-world sensor networks: Experiences in design and deployment. Technical
report, Summer School on Wireless Sensor Networks and Smart Objects, Schloss Dagstuhl,
2005.

[BKM+04] Jan Beutel, Oliver Kasten, Friedemann Mattern, Kay Römer, Frank Siegemund, and Lothar
Thiele. Prototyping Wireless Sensor Network Applications with BTnodes. In 1st European
Workshop on Wireless Sensor Networks (EWSN), LNCS, pages 323–338, Berlin, Germany,
January 2004. Springer-Verlag.

[BMR90] S. Baruah, A. Mok, and L. Rosier. Preemptive scheduling hard-realtime sporadic tasks on one
processor. In Proceedings of the Real-Time Systems Symposium, pages 182–190, December
1990.

[BO06] Sebnem Baydere and Others. Applications and application scenarios. Technical Report EW-
T311-YTU-001-04, Embedded WiSeNts, 2006.

c©Embedded WiSeNts consortium: all rights reserved page 104

Embedded WiSeNts Research Integration: Platform Survey

[BTna] BTnode: A Distributed Environment for Prototyping Ad Hoc Networks. (Project Website:
www.btnode.ethz.ch).

[BTnb] BTnode rev3: Users Survey. (Available at: www.btnode.ethz.ch/pub/uploads/
Documentation/20030905 btnode v3survey.pdf).

[CSS02] David Cavin, Yoav Sasson, and André Schiper. On the accuracy of manet simulators.
In POMC ’02: Proceedings of the second ACM international workshop on Principles of mobile
computing, pages 38–43, New York, NY, USA, 2002. ACM Press.

[Cur] David Curren. A survey of simulation in sensor networks.
www.cs.binghamton.edu/ kang/cs580s/david.pdf.

[DGV04] A. Dunkels, B. Grnvall, and T. Voigt. Contiki - a lightweight and flexible operating system for
tiny networked sensors. In Proceedings of the First IEEE Workshop on Embedded Networked
Sensors, Tampa, Florida, USA, November 2004.

[DH03] S. Dulman and P. Havinga. A simulation template for wireless sensor networks. In Pro-
ceedings of the 2003 IEEE International Symposium on Autonomous Decentralized Systems
(ISADS’03), Pisa, Italy, April 2003.

[DSH+03] W. Drytkiewicz, S. Sroka, V. Handziski, A. Köpke, and H. Karl. A mobility framework for
omnet++. In 3rd International OMNeT++ Workshop, at Budapest University of Technology
and Economics, Department of Telecommunications Budapest, Hungary, January 2003.

[DSV05] A. Dunkels, O. Schmidt, and T. Voigt. Using protothreads for sensor node programming. In
Proc. of the Workshop on Real-World Wireless Sensor Networks (REALWSN’05), Stockholm,
Sweden, June 2005.

[Dun03] A. Dunkels. Full TCP/IP for 8-bit architectures. In Proceedings of The First International
Conference on Mobile Systems, Applications, and Services (MOBISYS ‘03), May 2003.

[DvHHJ03] S. Dulman, L. van Hoesel, P. Havinga, and P. Jansen. Data centric architecture for wireless
sensor networks. In Proceedings of the ProRISC Workshop, November 2003.

[EFGK03] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermarrec. The
many faces of publish/subscribe. ACM Comput. Surv., 35(2):114–131, 2003.

[GKW+02] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and S. Wicker. Complex
behavior at scale: An experimental study of low-power wireless sensor networks, 2002.

[GLCB06] David Gay, Philip Levis, David Culler, and Eric Brewer. nesC 1.2 Language Reference Man-
ual. Online, 2006. http://nescc.cvs.sourceforge.net/*checkout*/nescc/nesc/doc/
ref.pdf.

[GLvB+03] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer, and David Culler.
The nesc language: A holistic approach to networked embedded systems. In Proceedings of
the ACM SIGPLAN 2003 Conference on Programming Language Design and Implementation
(PLDI), pages 1–11, New York, NY, USA, 2003. ACM Press.

c©Embedded WiSeNts consortium: all rights reserved page 105

Embedded WiSeNts Research Integration: Platform Survey

[HC02] Jason L. Hill and David E. Culler. Mica: A wireless platform for deeply embedded networks.
IEEE Micro, 22(6):12–24, 2002.

[HDJH04] T. Hofmeijer, S. Dulman, P. G. Jansen, and P. J. M. Havinga. Ambientrt - real time system
software support for data centric sensor networks. In 2nd Int. Conf. on Intelligent Sensors,
Sensor Networks and Information Processing (ISSNIP), Melbourne, Australia, pages 61–66,
Los Alamitos, California, December 2004. IEEE Computer Society Press.

[HKWW06] Vlado Handziski, Andreas Köpke, Andreas Willig, and Adam Wolisz. Twist: A scalable and
reconfigurable testbed for wireless indoor experiments with sensor network. In Proc. of the
2nd Intl. Workshop on Multi-hop Ad Hoc Networks: from Theory to Reality, (RealMAN
2006), Florence, Italy, May 2006.

[HPH+05] V. Handziski, J. Polastre, J.-H. Hauer, C. Sharp, A. Wolisz, and D. Culler. Flexible hardware
abstraction for wireless sensor networks. In Proceedings of Second European Workshop on
Wireless Sensor Networks (EWSN 2005), Istanbul, Turkey, February 2005.

[HPHS04] V. Handziski, J. Polastre, J. H. Hauer, and C. Sharp. Flexible hardware abstraction of
the ti msp430 microcontroller in tinyos. In Proceedings of the Second ACM Conference
on Embedded Networked Sensor Systems (SenSys), pages 277–278, Baltimore, MD, USA,
November 2004. ACM Press.

[HSW+00] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David E. Culler, and Kristofer S. J.
Pister. System Architecture Directions for Networked Sensors. In Architectural Support for
Programming Languages and Operating Systems, pages 93–104, 2000.

[HW05] D. Hobi and L. Winterhalter. Large-scale Bluetooth Sensor-Network Demonstrator. Master’s
thesis, ETH Zurich, October 2005.

[JMHS03] P. G. Jansen, S. J. Mullender, P. J. M. Havinga, and J. Scholten. Lightweight EDF
scheduling with deadline inheritance. Technical report TR-CTIT-03-23, Centre for Telem-
atics and Information Technology, Univ. of Twente, The Netherlands, May 2003. http:
//www.ub.utwente.nl/webdocs/ctit/1/000000c6.pdf.

[KHHK04a] A. Köpke, V. Handziski, J.-H. Hauer, and H. Karl. Structuring the information flow in
component-based protocol implementations for wireless sensor nodes. In Proc. Work-in-
Progress Session of the 1st European Workshop on Wireless Sensor Networks (EWSN), Tech-
nical Report TKN-04-001 of Technical University Berlin, Telecommunication Networks Group,
pages 41–45, Berlin, Germany, January 2004.

[KHHK04b] A. Köpke, V. Handziski, J.-H. Hauer, and H. Karl. Structuring the information flow in
component-based protocol implementations for wireless sensor nodes. In Work-in-Progress
Session of the First European Workshop on Wireless Sensor Networks (EWSN’04), January
2004.

c©Embedded WiSeNts consortium: all rights reserved page 106

Embedded WiSeNts Research Integration: Platform Survey

[KL01] Oliver Kasten and Marc Langheinrich. First Experiences with Bluetooth in the Smart-Its
Distributed Sensor Network. Workshop on Ubiqitous Computing and Communication, Con-
ference on Parallel Architectures and Compilation Techniques (PACT) 2001, October 2001.
Workshop proceedings available at http://research.ac.upc.edu/pact01/pucc.htm.

[KW03] Emin Gn Sirer Kevin Walsh. Staged simulation for improving the scale and performance
of wireless network simulations. In Procedings of the Winter Simulation Conference, New
Orleans, LA, December 2003.

[Lev06] Phil Levis. Programming TinyOS. Online, 2006. http://csl.stanford.edu/∼pal/pubs/
tinyos-programming-1-0.pdf.

[LGH+05] P. Levis, D. Gay, V. Handziski, J.-H.Hauer, B.Greenstein, M.Turon, J.Hui, K.Klues, C.Sharp,
R.Szewczyk, J.Polastre, P.Buonadonna, L.Nachman, G.Tolle, D.Culler, and A.Wolisz. T2: A
second generation os for embedded sensor networks. Technical Report TKN-05-007, Telecom-
munication Networks Group, Technische Universität Berlin, November 2005.

[LH05] Koen Langendoen and Gertjan Halkes. Energy-efficient medium access control. In Richard
Zurawski, editor, Embedded Systems Handbook, chapter 34. CRC Press, 2005.

[LLWC03] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. TOSSIM: Simulating large wireless
sensor networks of tinyos motes. In Proceedings of the First ACM Conference on Embedded
Networked Sensor Systems (SenSys), 2003.

[LMG+04] Philip Levis, Sam Madden, David Gay, Joseph Polastre, Robert Szewczyk, Alec Woo, Eric
Brewer, and David Culler. The emergence of networking abstractions and techniques in
tinyos. In Proceedings of the First USENIX/ACM Symposium on Networked Systems Design
and Implementation (NSDI 2004), San Francisco, California, USA, mar 2004.

[MKL+04] G. Mainland, L. Kang, S. Lahaie, D. C. Parkes, and M. Welsh. Using virtual markets to
program global behavior in sensor networks. In Proceedings of the 2004 SIGOPS European
Workshop, Leuven, Belgium, September 2004.

[Mot] Moteiv. Web page.

[NCC] NCCR-MICS : National Center of Competence in Research - Mobile Information and Com-
munication Systems. (Project Website: www.mics.org).

[ns2] Contributed code. http://nsnam.isi.edu/nsnam/index.php/Contributed Code.

[ns202] The vint project. 2002.

[NT06] L. Negri and L. Thiele. Power-delay tradeoffs in bluetooth scatternets. In Proceeding of the
3rd European Workshop on Wireless Sensor Networks (EWSN 2006), Zurich, Switzerland,
February 2006.

[Par] Particle Computer GmbH. Company Website: www.particle-computer.net/.

c©Embedded WiSeNts consortium: all rights reserved page 107

Embedded WiSeNts Research Integration: Platform Survey

[PHC04] J. Polastre, J. Hill, and D. Culler. Versatile Low Power Media Access for Wireless Sensor
Networks. In Proceedings of the 2nd International Conference on Embedded Networked Sensor
Systems (SenSys ’04), pages 95–107, New York, NY, USA, 2004. ACM Press.

[PO06] Marcelo Pias and Others. Vertical system functions. Technical Report EW-T313-UCAM-001-
06, Embedded WiSeNts Project, 2006.

[Pro] The RUNES Project. Web page. http://www.ist-runes.org/.

[RR05a] M. Ringwald and K. Roemer. BitMAC: A Deterministic, Collision-Free, and Robust MAC
Protocol for Sensor Networks. In Erdal Cayirci, Sebnem Baydere, and Paul Havinga, edi-
tors, Proceedings of the Second IEEE European Workshop on Wireless Sensor Networks and
Applications (EWSN 2005), Istanbul, Turkey, February 2005.

[RR05b] Matthias Ringwald and Kay Römer. Monitoring and Debugging of Deployed Sensor Networks.
2. GI/ITG KuVS Fachgespräch Systemsoftware für Pervasive Computing, Arbeitsberichte des
Instituts für Informatik, vol. 38/5, October 2005.

[RSV+05] Hartmut Ritter, Jochen Schiller, Thiemo Voigt, Adam Dunkels, and Juan Alonso. Experimen-
tal Evaluation of Lifetime Bounds for Wireless Sensor Networks. In Proceedings of the Second
European Workshop on Sensor Networks (EWSN2005), Istanbul, Turkey, January 2005.

[RYR06] M. Ringwald, M. Yucel, and K. Römer. Demo Abstract: Interactive In-Field Inspection of
WSNs. In Adjunct Proceedings of the 3rd European Workshop on Wireless Sensor Networks
(EWSN 2006), Zurich, Switzerland, February 2006.

[Sca] Scatterweb. Web page. http://www.scatterweb.com/.

[SM00] Richard M. Stallman and Roland McGrath. GNU Make: A Program for Directing Recompi-
lation, for Version 3.79. Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139,
USA, Tel: (617) 876-3296, USA, 2000.

[Sma] Smart-Its Project. (Project Website: www.smart-its.org).

[sns] http://www.cs.cornell.edu/people/egs/sns/.

[SO06] Silvia Santini and Others. System architectures and progamming models. Technical Report
EW-T314-ETHZ-001, Embedded WiSeNts Project, 2006.

[Tin03] TinyOS 1.x Tutorial. Online, 2003. http://www.tinyos.net/tinyos-1.x/doc/
tutorial/.

[vDL03] Tijs van Dam and Koen Langendoen. An adaptive energy-efficient mac protocol for wireless
sensor networks. In SenSys ’03: Proceedings of the 1st international conference on Embedded
networked sensor systems, pages 171–180, New York, NY, USA, 2003. ACM Press.

[vHH06] Lodewijk van Hoesel and Paul Havinga. Design aspects of an energy-efficient, lightweight
medium access control protocol for wireless sensor networks. INTERNATIONAL JOURNAL
OF COMMUNICATION SYSTEMS, pages 1–21, 2006.

c©Embedded WiSeNts consortium: all rights reserved page 108

Embedded WiSeNts Research Integration: Platform Survey

[YHE02] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient mac protocol for wireless sensor net-
works. In Twenty-First Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM), volume 3, pages 1567–1576, June 2002.

[ZO06] Andrea Zanella and Others. Paradigms for algorithms and interations. Technical Report
EW-D312-DEI-001-03, Embedded WiSeNts Proejct, 2006.

[st06] Fredrik sterlind. A Sensor Network Simulator for the Contiki OS. Technical Report T2006-05,
SICS – Swedish Institute of Computer Science, February 2006.

c©Embedded WiSeNts consortium: all rights reserved page 109

